經(jīng)統(tǒng)計(jì),用于數(shù)學(xué)學(xué)習(xí)的時(shí)間(單位:小時(shí))與成績(jī)(單位:分)近似于線性相關(guān)關(guān)系.對(duì)某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時(shí)間x與數(shù)學(xué)成績(jī)y進(jìn)行數(shù)據(jù)收集如下:
x 15 16 18 19 22
y 102 98 115 115 120
由表中樣本數(shù)據(jù)求得回歸方程為y=bx+a,則點(diǎn)(a,b)與直線x+18y=100的位置關(guān)系是(  )
A、a+18b<100
B、a+18b>100
C、a+18b=100
D、a+18b與100的大小無(wú)法確定
考點(diǎn):線性回歸方程
專(zhuān)題:概率與統(tǒng)計(jì)
分析:由樣本數(shù)據(jù)可得,
.
x
,
.
y
,利用公式,求出b,a,點(diǎn)(a,b)代入x+18y,求出值與100比較即可得到選項(xiàng).
解答: 解:由題意,
.
x
=
1
5
(15+16+18+19+22)=18,
.
y
=
1
5
(102+98+115+115+120)=110,
5
i=1
xiyi=9993,5
.
x
.
y
=9900,
5
i=1
xi2=1650,n(
.
x
)2=5•324=1620,
∴b=
9993-9900
1650-1620
=3.1,
∴a=110-3.1×18=54.2,
∵點(diǎn)(a,b)代入x+18y,
∴54.2+18×3.1=110>100.
即a+18b>100
故選:B.
點(diǎn)評(píng):本題考查數(shù)據(jù)的回歸直線方程,利用回歸直線方程恒過(guò)樣本中心點(diǎn)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,
e
為單位向量,當(dāng)
a
,
e
的夾角為
3
時(shí),
a
+
e
a
-
e
上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2
x
+x)(1-
x
6的展開(kāi)式中x的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為1的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好落在正方形與曲線y=
x
圍成的區(qū)域內(nèi)(陰影部分)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2+a4=4,a5=4a3,則數(shù)列{an}的前10項(xiàng)和等于(  )
A、23B、95
C、135D、138

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈R,符號(hào)[x]表示不超過(guò)x的最大整數(shù),若函數(shù)f(x)=
[x]
x
-a(x>0)有且僅有2個(gè)零點(diǎn),則a的取值范圍是 ( 。
A、(
1
2
,
2
3
]
B、[
1
2
,
2
3
]
C、(
2
3
,
3
4
]
D、[
2
3
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(x-1)2<4的解集是( 。
A、x<3
B、x>-1
C、x<-1或x>3
D、-1<x<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinxcosxcos2x的最小正周期為( 。
A、
π
2
B、
π
4
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
1+i
1-i
的模為(  )
A、1
B、2
C、
2
D、
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案