11.下列各組中的兩個向量共線的是( 。
A.$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(2,6)B.$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(4,8)C.$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,1)D.$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(6,-4)

分析 利用向量共線定理即可判斷出結(jié)論.

解答 解:若兩向量滿足$\overrightarrow{a}=λ\overrightarrow$,則兩向量共線,
D中$\overrightarrow$=-$\overrightarrow{a}$,∴兩向量共線.
故選:D.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,且f(x)與g(x)在x=0處有相同的切線.
(1)求函數(shù)f(x)的解析式,并討論f(x)在[t,t+1](t∈R)上的最小值;
(2)若對任意的x≥-2,kf(x)≥g(x)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知全集U=R,集合A={x|y=lg(x2-4x)},B={x|x<2},則(∁UA)∩B=( 。
A.{x|x≥0}B.{x|0≤x<2}C.{x|2<x≤4}D.{x|0≤x≤4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.若拋物線C的頂點在坐標原點O,其圖象關(guān)于x軸對稱,且經(jīng)過點M(2,2).
(1)求拋物線C的方程;
(2)過點M作拋物線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當k1,k2變化且滿足k1+k2=-1時,證明直線AB恒過定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.三條不同直線的a,b,c,其中正確的命題個數(shù)是( 。
(1)若a∥b,b∥c,則a∥c;
(2)若a⊥b,c⊥b,a∥c;
(3)若a∥c,c⊥b,則b⊥a;
(4)若a與b,a與c都是異面直線,則b與c也是異面直線.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊為a,b,c.已知a=2c,且A-C=$\frac{π}{2}$.
(1)求sinC的值;
(2)當b=1時,求△ABC外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.曲線y=xlnx上點P處的切線平行于直線2x-y+1=0,則點P的坐標是( 。
A.(1,e)B.(e,e)C.(e,1)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直角的三邊長a,b,c,滿足a≤b<c
(1)在a,b之間插入2016個數(shù),使這2018個數(shù)構(gòu)成以a為首項的等差數(shù)列{an},且它們的和為2018,求斜邊的最小值;
(2)已知a,b,c均為正整數(shù),且a,b,c成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列S1,S2,S3,…,Sn,且${T_n}=-{S_1}+{S_2}-{S_3}+…+{(-1)^n}{S_n}$,求滿足不等式${T_{2n}}>6•{2^{n+1}}$的所有n的值;
(3)已知a,b,c成等比數(shù)列,若數(shù)列{Xn}滿足$\sqrt{5}{X_n}={({\frac{c}{a}})^n}-{({-\frac{a}{c}})^n}\;(n∈{N^*})$,證明:數(shù)列$\left\{{\sqrt{X_n}}\right\}$中的任意連續(xù)三項為邊長均可以構(gòu)成直角三角形,且Xn是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax-$\frac{a}{4}+\frac{1}{2}$,x∈[0,1],求f(x)的最小值g(a).

查看答案和解析>>

同步練習冊答案