【題目】已知函數(shù)f(x)=的定義域?yàn)榧?/span>A,g(x)=的定義域?yàn)榧?/span>B,C={xR|x<a或x>a+1}
(1)求集合A,(CA)B
(2)若AC=R,求實(shí)數(shù)a的取值范圍
【答案】(1),;(2)
【解析】
(1)找出函數(shù)f(x)的定義域確定出A,找出g(x)的定義域確定出B,求出A的補(bǔ)集,找出A補(bǔ)集與B的交集即可;
(2)根據(jù)A與C并集為R,列出關(guān)于a的不等式組,求出不等式組的解集即可得到a的范圍.
(1)要使函數(shù)f(x)有意義,則,
解得:﹣2≤x<1,
∴A={x|﹣2≤x<1},即RA={x|x<﹣2或x≥1},
要使函數(shù)g(x)有意義,則3﹣x≥0,
解得:x≤3,
即B={x|x≤3},
∴(RA)∩B={x|x<﹣2或1≤x≤3};
(2)∵A∪C=R,
∴,
解得:﹣2≤a<0,
∴實(shí)數(shù)a的取值范圍為[﹣2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)國(guó)家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長(zhǎng).
(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域
(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬元?(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某服裝商場(chǎng),當(dāng)某一季節(jié)即將來臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢(shì).設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價(jià)格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次之間的關(guān)系為,,試問該服裝第幾周的每件銷售利潤(rùn)最大?(每件銷售利潤(rùn)=每件銷售價(jià)格-每件進(jìn)價(jià))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,,分別是,的中點(diǎn).
(1)判定與是否垂直,并說明理由;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=x2-aln x-1,函數(shù)F(x)=.
(1)如果函數(shù)f (x)的圖象上的每一點(diǎn)處的切線斜率都是正數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=2時(shí),你認(rèn)為函數(shù)y=的圖象與y=F(x)的圖象有多少個(gè)公共點(diǎn)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD是邊長(zhǎng)為60 cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P, 正好形成一個(gè)正四棱柱形狀的包裝盒,若要包裝盒容積V(cm3)最大, 則EF長(zhǎng)為____ cm .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)通過對(duì)某企業(yè)2018年的前三個(gè)季度生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)(單位:萬元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:
3 | 6 | 9 | |
241 | 244 | 229 |
(1)根據(jù)上表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述與x的變化關(guān)系,并說明理由:,,
(2)利用(1)中選擇的函數(shù):
①估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn);
②預(yù)估年底12月份的利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com