2.設(shè){an}是首項(xiàng)為a1,公差為-1的等差數(shù)列,sn為其前n項(xiàng)和,s2是s1與s4的等比中項(xiàng),則a1=( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 利用等差數(shù)列通項(xiàng)公式和等比中項(xiàng)的定義列出方程,由此能求出首項(xiàng).

解答 解:∵{an}是首項(xiàng)為a1,公差為-1的等差數(shù)列,sn為其前n項(xiàng)和,
s2是s1與s4的等比中項(xiàng),
∴${{S}_{2}}^{2}={S}_{1}•{S}_{4}$,
即(2a1-1)2=${a}_{1}[4{a}_{1}+\frac{4×3}{2}×(-1)]$,
解得a1=-$\frac{1}{2}$.
故選:D.

點(diǎn)評 本題考查等差數(shù)列的首項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,“sinA=sinB”是“A=B”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量$\overrightarrow a=({{S_n},1})$,$\overrightarrow b=({{2^n}-1,\frac{1}{2}})$,滿足條件$\overrightarrow a∥\overrightarrow b$,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足b1=1,bn+1-bn=1,cn=$\frac{b_n}{a_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖放置的邊長為2的正方形PABC沿x軸正半軸滾動(dòng).設(shè)頂點(diǎn)P(x,y)的軌跡方程是y=f(x),則f(x)的最小正周期為8;y=f(x)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為4π+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,∠BAD=∠ADC=$\frac{π}{2}$,AB=AD=AP=3,DC=2,點(diǎn)M在PB上,且PM=2MB.
(1)證明:CM∥平面PAD;
(2)求二面角M-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=lg($\frac{2}{x+1}$-1)的定義域?yàn)榧螦,函數(shù)g(x)=-x2+2x+a(0≤x≤3,a∈R)的值域?yàn)榧螧
(Ⅰ)求f($\frac{1}{2015}$)+f(-$\frac{1}{2015}$)的值;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.滿足條件{2,3}⊆M⊆{1,2,3,4 }的集合M的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若平面向量$\overrightarrow a=(-1,2)$與$\overrightarrow b$方向相反,且$|{\overrightarrow b}|=\sqrt{5}$,則$\overrightarrow b$的坐標(biāo)為(1,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在我國明代數(shù)學(xué)家吳敬所著的《九章算術(shù)比類大全》中,有一道數(shù)學(xué)名題叫“寶塔裝燈”,內(nèi)容為“遠(yuǎn)望巍巍塔七層,紅燈點(diǎn)點(diǎn)倍加增;共燈三百八十一,請問頂層幾盞燈?”(“倍加增”指燈的數(shù)量從塔的頂層到底層按公比為2的等比數(shù)列遞增).根據(jù)此詩,可以得出塔的頂層和底層共有( 。
A.3盞燈B.192盞燈C.195盞燈D.200盞燈

查看答案和解析>>

同步練習(xí)冊答案