6.若a>b>0,0<c<1,則(  )
A.logac<logbcB.ca>cbC.ac<abD.logca<logcb

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性即可得出.

解答 解:∵a>b>0,0<c<1,
則logac>logbc,ca<cb,ac與ab的大小關系不確定,logca<logcb.
故選:D.

點評 本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知全集U=R,集合A={x|x2-2x≤0},B={x|y=lg(x-1)},則集合A∩(∁UB)=( 。
A.{x|x<0,或x>2}B.{x|0<x<2}C.{x|0≤x<1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖所示,在△ABC中,M在BC上,N在AM上,CM=CN,且$\frac{AM}{AN}$=$\frac{BM}{CN}$,下列結論中正確的是( 。
A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知二次函數(shù)f(x)滿足f(0)=1且f(x+1)-f(x)=2x+2.
(Ⅰ)求f(x)的解析式; 
(Ⅱ)若g(x)=2f(x),x∈[-1,1],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+x2-1,g(x)=ex-e
( I)試判斷f(x)的單調性;
( II)若對于任意的x∈(1,+∞),mg(x)>f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,四棱錐P-ABCD中,所有棱長均為2,O是底面正方形ABCD中心,E為PC中點,則直線OE與直線PD所成角為( 。
A.30°B.60°C.45°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知正四棱柱ABCD-A1B1C1D1中,二面角A-A1C-D1的余弦值為$-\frac{{\sqrt{10}}}{5}$.
(1)求證:BD⊥A1C1
(2)在線段CC1上是否存在點P,使得平面A1CD1⊥平面PBD,若存在,求出$\frac{CP}{{P{C_1}}}$的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若正方體ABCD-A1B1C1D1中,E、F分別是D1C1、AB的中點,則A1B1與截面A1ECF所成的角的正切值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.計算:${(2\frac{1}{4})^{\frac{1}{2}}}-{(3\frac{3}{8})^{-\frac{2}{3}}}$=$\frac{19}{18}$.

查看答案和解析>>

同步練習冊答案