分析 該題涉及兩個變量,故是與面積有關(guān)的幾何概型,分別表示出滿足條件的面積和整個區(qū)域的面積,最后利用概率公式解之即可.
解答 解:由題意可得,區(qū)間[0,2]上任取兩個實數(shù)x,y的區(qū)域為邊長為2的正方形,面積為4.
∵x2+y2≤1的區(qū)域是圓的面積的$\frac{1}{4}$,其面積S=$\frac{π}{4}$,
∴在區(qū)間[0,2]上任取兩個實數(shù)x,y,則x2+y2≤1 的概率為$\frac{π}{16}$.
故答案為$\frac{π}{16}$.
點評 本題主要考查了與面積有關(guān)的幾何概率的求解,解題的關(guān)鍵是準(zhǔn)確求出區(qū)域的面積,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | [-2,0) | C. | (-2,0) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $3\sqrt{3}$ | B. | $\frac{{\sqrt{39}}}{2}$ | C. | $\frac{{26\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{39}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {-1,0,1} | C. | {-1,0,1,2} | D. | {-1,0,1,2,3,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=2或3x-4y+10=0 | B. | x=2或x+2y-10=0 | C. | y=4或3x-4y+10=0 | D. | y=4或x+2y-10=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com