A. | $\sqrt{3}$ | B. | $1+\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | $3+\sqrt{3}$ |
分析 根據(jù)題意可知∠F1PF2=90°,∠PF1F2=60°,|F1F2|=2c,求得|PF1|和|PF2|,進而利用雙曲線定義建立等式,求得a和c的關系,則離心率可得.
解答 解:依$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0,tan∠P{F_1}{F_2}=\sqrt{3}$,
可知∠F1PF2=90°,|F1F2|=2c,∠PF1F2=60°,
∴|PF2|=$\frac{\sqrt{3}}{2}$|F1F2|=$\sqrt{3}$c,|PF1|=$\frac{1}{2}$|F1F2|=c,
由雙曲線定義可知|PF2|-|PF1|=2a=($\sqrt{3}$-1)c,
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1.
故選:B.
點評 本題主要考查了雙曲線的簡單性質特別是雙曲線定義的運用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|0<x<3} | B. | {x|x≤1} | C. | {x|x<3} | D. | {x|0<x≤1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com