19.若$sinα=\frac{1}{5}$,則cos2α=( 。
A.$\frac{23}{25}$B.$-\frac{2}{25}$C.$-\frac{23}{25}$D.$\frac{2}{25}$

分析 直接代入二倍角公式cos2α=1-2sin2α即可得到答案.

解答 解:∵$sinα=\frac{1}{5}$,
∴cos2α=1-2sin2α=1-2×$\frac{1}{25}$=$\frac{23}{25}$,
故選A.

點(diǎn)評(píng) 本題主要考查二倍角的余弦公式的應(yīng)用.二倍角的余弦公式:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a=sin21°,b=cos72°,c=tan23°,則a,b,c的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=asinx-bcosx滿足f($\frac{2π}{3}$-x)=f(x),那么$\frac{a}$=( 。
A.$\sqrt{3}$B.1C.-$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={-1,0,1},N={x|(x+2)(x-1)<0},則M∩N=(  )
A.{-1,0}B.{0,1}C.{0}D.{-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a=0.20.3,b=log0.23,c=log0.24,則a、b、c從小到大的順序?yàn)閏<b<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$y={log_2}cos(x+\frac{π}{4})$的單調(diào)減區(qū)間為( 。
A.$[2kπ-\frac{π}{4},2kπ+\frac{π}{4})\begin{array}{l}{\;}&{(k∈Z)}\end{array}$B.$[2kπ-\frac{5π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$
C.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$D.$(2kπ-\frac{3π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=x+\frac{4}{x}$,$g(x)={log_a}({{x^2}-2x+3})$,其中a>0,且a≠1.
(Ⅰ)用定義證明函數(shù)f(x)在[2,+∞)是增函數(shù);
(Ⅱ)若對(duì)于任意的x0∈[2,4],總存在x1∈[0,3],使得f(x0)=g(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.是否存在這樣的實(shí)數(shù)a,使得函數(shù)f(x)=x2+(3a-2)x+a-1圖象在區(qū)間(-1,3)上與x軸有且只有一個(gè)交點(diǎn)?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,BC=$\sqrt{2},AC=1,∠C=\frac{π}{4}$,則AB等于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案