1.“ab<0”是“方程ax2+by2=c表示雙曲線”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

分析 方程ax2+by2=c即$\frac{{x}^{2}}{\frac{c}{a}}$+$\frac{{y}^{2}}{\frac{c}}$=1表示雙曲線,則$\frac{c}{a}•\frac{c}$<0,解得ab<0.反之不成立,例如c=0.即可判斷出結(jié)論.

解答 解:方程ax2+by2=c即$\frac{{x}^{2}}{\frac{c}{a}}$+$\frac{{y}^{2}}{\frac{c}}$=1表示雙曲線,則$\frac{c}{a}•\frac{c}$<0,解得ab<0.
反之不成立,例如c=0.
∴“ab<0”是“方程ax2+by2=c表示雙曲線”的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了不等式的解法與性質(zhì)、簡(jiǎn)易邏輯的判定方法、雙曲線的標(biāo)準(zhǔn)方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線${x^2}-\frac{y^2}{m}=1$與拋物線y2=8x的準(zhǔn)線交于點(diǎn)P,Q,拋物線的焦點(diǎn)為F,若△PQF是等邊三角形,則雙曲線的離心率為(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{25}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果cosα=$\frac{1}{5}$,且α是第四象限的角,那么cos(α+$\frac{π}{3}$)=( 。
A.$\frac{1-6\sqrt{2}}{10}$B.$\frac{\sqrt{3}+2\sqrt{6}}{10}$C.$\frac{1+6\sqrt{2}}{10}$D.$\frac{\sqrt{3}-2\sqrt{6}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$cos(\frac{π}{2}-a)=-\frac{1}{3}$,則cos(π-2a)=(  )
A.-$\frac{4\sqrt{2}}{9}$B.-$\frac{7}{9}$C.$\frac{7}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:“等軸雙曲線的漸近線互相垂直”;命題q:“直線l與拋物線C只有一個(gè)公共點(diǎn),則l與C相切”,下列結(jié)論正確的是(  )
A.p∧q為真B.p∨q為假C.p∧(¬p)為真D.(¬p)∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={0,1,2,3},B=$\{x∈N\left|{y=\sqrt{x-1}}\right.\}$,則A∩B=(  )
A.{0,1,2}B.{1,2,3}C.{x|x≥1}D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)滿足xf′(x)=(x-1)f(x),且f(1)=1,若A為△ABC的最大內(nèi)角,則f[tan(A-$\frac{π}{3}$)]的取值范圍為(-$\frac{\sqrt{3}}{3{e}^{1+\sqrt{3}}}$,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面直角坐標(biāo)系xOy中,已知$x_1^2-ln{x_1}-{y_1}=0$,x2-y2-2=0,則${({x_2}-{x_1})^2}+{({y_2}-{y_1})^2}$的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列an=$\left\{{\;}\right.\begin{array}{l}{3,n=1}\\{{2^{n-1}},n≥2}\end{array}$,Sn是該數(shù)列的前n項(xiàng)和,若Sn能寫成tp(t,p∈N*且t>1,p>1)的形式,則稱Sn為“指數(shù)型和”.則{Sn}中是“指數(shù)型和”的項(xiàng)的序號(hào)和為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案