8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則下列說法中,所有正確說法的序號是①②
①f(x)的圖象關于直線x=$\frac{7π}{12}$對稱
②f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z
③方程f(x)=1在[-$\frac{π}{2}$,0]上有兩個不相等的實根
④函數(shù)f(x)的圖象是由函數(shù)y=2sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個單位得到的.

分析 先求出函數(shù)的解析式,再結(jié)合函數(shù)的圖象進行判斷,即可得出結(jié)論.

解答 解:由題意,A=2,$\frac{T}{4}$=$\frac{π}{3}-\frac{π}{12}$=$\frac{π}{4}$,∴ω=2,
($\frac{π}{12}$,2)代入函數(shù),可得φ=$\frac{π}{3}$,∴f(x)=2sin(2x+$\frac{π}{3}$),
①周期為π,f(x)的圖象關于直線x=$\frac{π}{12}$對稱,可得f(x)的圖象關于直線x=$\frac{7π}{12}$對稱,正確
②由圖象可得f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,正確;
③方程f(x)=1在[-$\frac{π}{2}$,0]上有1個實根,不正確;
④函數(shù)f(x)的圖象是由函數(shù)y=2sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個單位得到的,不正確.
故答案為:①②.

點評 本題考查正弦函數(shù)的圖象與性質(zhì),考查數(shù)形結(jié)合的數(shù)學思想,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知m∈R,i為虛數(shù)單位,若$\frac{1-2i}{m-i}$>0,則m=( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知A={x|2≤x≤π},定義在A上的函數(shù)y=logax(a>0,且a≠1)的最大值比最小值大1,則底數(shù)a的值為( 。
A.$\frac{2}{π}$B.$\frac{π}{2}$C.π-2D.$\frac{2}{π}$或$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若x,y滿足 $\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,則2x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.“m=-3”是“直線l1:mx+(1-m)y-3=0與直線l2:(m-1)x+(2m+3)y-2=0相互垂直”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列選項敘述錯誤的是(  )
A.命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
B.若p∨q為真命題,則p、q均為真命題
C.若命題p:?x∈R,x2+x+1≠0,則?p:?x∈R,x2+x+1=0
D.a,b,c∈R,則“ac2>bc2”是“a>b”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,若a=bcosC+csinB.則B=45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,|{\overrightarrow a-2\overrightarrow b}|=2\sqrt{10}$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知點的極坐標是$(3,\frac{π}{4})$,則它的直角坐標是$(\frac{{3\sqrt{2}}}{2},\frac{{3\sqrt{2}}}{2})$.

查看答案和解析>>

同步練習冊答案