【題目】某高校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.

組號(hào)

分組

頻數(shù)

頻率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合計(jì)

100

1.000

(1)求頻率分布表中np的值,并估計(jì)該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、45組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?

(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.

【答案】(1),,中位數(shù)估計(jì)值為171.7(2)第3、4、5組每組各抽學(xué)生人數(shù)為3、2、1(3)

【解析】

(1)由頻率分布表可得:,,由中位數(shù)的求法可得中位數(shù)估計(jì)值為171.7;

(2)因?yàn)楣P試成績(jī)高的第3、4、5組的人數(shù)之比為,由分層抽樣的方法選6名學(xué)生,三個(gè)小組分別選的人數(shù)為3、2、1;

(3)先列舉出從6名學(xué)生中隨機(jī)抽取2名學(xué)生的不同取法,再列舉出第4組至少有1名學(xué)生被甲考官面試的取法,再結(jié)合古典概型的概率公式即可得解.

解:(1)由已知:,

,,中位數(shù)為171.7,

即中位數(shù)估計(jì)值為171.7,

(2)由已知,筆試成績(jī)高的第3、4、5組的人數(shù)之比為,現(xiàn)用分層抽樣的方法選6名學(xué)生。故第3、4、5組每組各抽學(xué)生人數(shù)為3、2、1。

(3)在(2)的前提下,記第3組的3名學(xué)生為,,

第4組的2名學(xué)生為,第5組的1名學(xué)生為,且“第4組至少有1名學(xué)生被甲考官面試”為事件A

則所有的基本事件有:,,,,,,,,,,,一共15種。

A事件有:,,,,,,,一共9種。

,

答:第4組至少有1名學(xué)生被甲考官面試的概率為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)||,實(shí)數(shù)m,n滿足0mn,且f(m)f(n),若f(x)[m2,n]上的最大值為2,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A.命題“若,則”的逆否命題是“若,則

B.”是“”的充分不必要條件

C.為假命題,則、均為假命題

D.命題:“,使得”,則非:“,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,為參數(shù)點(diǎn)的極坐標(biāo)為,曲線C的極坐標(biāo)方程為

試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點(diǎn)在直角坐標(biāo)系下的坐標(biāo);

設(shè)直線l與曲線C相交于兩點(diǎn)A,B,點(diǎn)MAB的中點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,a1=2,公比q>0,且a2,6,a3成等差數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log2an,,求使的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,已知,D是邊AC上一點(diǎn),將沿BD折起,得到三棱錐.若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線段BC上,設(shè),則x的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對(duì)轄區(qū)內(nèi),三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評(píng)估,考評(píng)分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級(jí)”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級(jí)”環(huán)保單位.現(xiàn)通過(guò)分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評(píng)分?jǐn)?shù)如下:

類行業(yè):85,82,7778,8387;

類行業(yè):76,6780,85,7981;

類行業(yè):8789,76,86,7584,90,82

(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級(jí)”環(huán)保單位,又有“非星級(jí)”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)證明:函數(shù)在區(qū)間存在唯一的極小值點(diǎn),且;

(2)證明:函數(shù)有且僅有兩個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案