13.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ-4sinθ=0,P點(diǎn)的極坐標(biāo)為$({3,\frac{π}{2}})$,在平面直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)P,斜率為$\sqrt{3}$
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

分析 (Ⅰ)曲線C的極坐標(biāo)方程為ρcos2θ-4sinθ=0,即ρ2cos2θ-4ρsinθ=0,即可寫出曲線C的直角坐標(biāo)方程;直線l經(jīng)過點(diǎn)P(0,3),斜率為$\sqrt{3}$,即可寫出直線l的參數(shù)方程;
(Ⅱ)$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入圓的普通方程,整理,得:t2+$\sqrt{3}$t-3=0,利用參數(shù)的幾何意義,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

解答 解:(Ⅰ)曲線C的極坐標(biāo)方程為ρcos2θ-4sinθ=0,即ρ2cos2θ-4ρsinθ=0,直角坐標(biāo)方程為x2-4y=0;
直線l經(jīng)過點(diǎn)P(0,3),斜率為$\sqrt{3}$,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù));
(Ⅱ)$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入x2-4y=0,整理,得:t2-8$\sqrt{3}$t-48=0,
設(shè)t1,t2是方程的兩根,∴t1•t2=-48,t1+t2=8$\sqrt{3}$
∴$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{192+192}}{48}$=$\frac{\sqrt{6}}{6}$.

點(diǎn)評 本題考查了參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)$f(x)=sin(\frac{π}{2}-x)$的圖象上所有點(diǎn)向左平行移動$\frac{π}{6}$個單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對稱軸的方程是( 。
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{2π}{3}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知A為銳角,且bsinAcosC+csinAcosB=$\frac{\sqrt{3}}{2}$a.
(1)求角A的大。
(2)設(shè)函數(shù)f(x)=tanAsinωxcosωx-$\frac{1}{2}$cos2ωx(ω>0),其圖象上相鄰兩條對稱軸間的距離為$\frac{π}{2}$,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{4}$個單位,得到函數(shù)y=g(x)圖象,求函數(shù)g(x)在區(qū)間[-$\frac{π}{24}$,$\frac{π}{4}$]上值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為了對2016年某校中考成績進(jìn)行分析,在60分以上的全體同學(xué)中隨機(jī)抽出8位,他們的數(shù)學(xué)分?jǐn)?shù)(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分?jǐn)?shù)從小到大排是72、77、80、84、88、90、93、95.
(1)若規(guī)定85分以上為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
(2)若這8位同學(xué)的數(shù)學(xué)、物理、化學(xué)分?jǐn)?shù)事實(shí)上對應(yīng)如下表:
學(xué)生編號12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
化學(xué)分?jǐn)?shù)z6772768084879092
①用變量y與x、z與x的相關(guān)系數(shù)說明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;
②求y與x、z與x的線性回歸方程(系數(shù)精確到0.01),當(dāng)某同學(xué)的數(shù)學(xué)成績?yōu)?0分時,估計(jì)其物理、化學(xué)兩科的得分.
參考公式:相關(guān)系數(shù)$r=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sqrt{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}•\sum_{i=1}^n{{{({{y_i}-\overline y})}^2}}}}$,
回歸直線方程是:$\hat y=bx+a$,其中$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}},a=\overline y-b\overline x$,
參考數(shù)據(jù):$\overline x=77.5,\overline y=85,\overline z=81,\sum_{i=1}^8{{{({{x_i}-\overline x})}^2}≈1050,\sum_{i=1}^8{{{({{y_i}-\overline y})}^2}≈456}}$,$\sum_{i=1}^8{{{({{z_i}-\overline z})}^2}}≈550,\sum_{i=1}^8{({{x_i}-\overline x})({{y_i}-\overline y})≈688}$,$\sum_{i=1}^8{({{x_i}-\overline x})({{z_i}-\overline z})≈755},\sqrt{1050}≈32.4$,$\sqrt{456}≈21.4,\sqrt{550}≈23.5$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{1-|x-1|(x≤2)}\\{{e^{x-2}}(-{x^2}+8x-12)(x>2)}\end{array}}\right.$,如在區(qū)間(1,+∞)上存在n(n≥2)個不同的數(shù)x1,x2,x3,…,xn,使得比值$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$成立,則n的取值集合是( 。
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是線段AB上的點(diǎn),則P到AC,BC的距離的乘積的最大值為( 。
A.3B.2C.$2\sqrt{3}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.圓(x-2)2+y2=4關(guān)于直線$y=\frac{{\sqrt{3}}}{3}x$對稱的圓的方程是( 。
A.${(x-\sqrt{3})^2}+{(y-1)^2}=4$B.${(x-\sqrt{2})^2}+{(y-\sqrt{2})^2}=4$C.x2+(y-2)2=4D.${(x-1)^2}+{(y-\sqrt{3})^2}=4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義域?yàn)镽的函數(shù)f(x)的圖象經(jīng)過點(diǎn)(1,1),且對任意實(shí)數(shù)x1<x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>-2$,則不等式$f({log_2}|{3^x}-1|)<3-{log_{\sqrt{2}}}|{3^x}-1|$的解集為( 。
A.(-∞,0)∪(0,1)B.(0,+∞)C.(-1,0)∪(0,3)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知函數(shù)),若且在上有且僅有三個零點(diǎn),則( )

A. B.2 C. D.

查看答案和解析>>

同步練習(xí)冊答案