已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)令bn=an+2n,求數(shù)列{bn}前n項(xiàng)和Sn
(Ⅰ)設(shè)數(shù)列{an}公差為d,
則a1+a2+a3=3a1+3d=12,
又a1=2,d=2,
∴an=2n,
(Ⅱ)由(1)可得bn=an+2n=2n+2n
∴Sn=2(1+2+…+n)+(2+22+…+2n)=n(n+1)+2n+1-2=2n+1+n2+n-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,a3=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
Sn
}
的前n項(xiàng)和為Tn,求T2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn(n∈N+).
(Ⅰ)證明數(shù)列{Sn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)an;
(Ⅲ)求數(shù)列{n•an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)的和Sn與an的關(guān)系是Sn=-an+1-
1
2n
,n∈N*
(1)求證:數(shù)列{2nan}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)對(duì)任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,92m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm,求數(shù)列{bm}的前m項(xiàng)和Sm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ)求證數(shù)列{
1
an
}
是等差數(shù)列并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anan+1,求證:b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號(hào)數(shù).已知數(shù)列的前項(xiàng)和),則數(shù)列的變號(hào)數(shù)為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),當(dāng)時(shí),(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N*,數(shù)列{bn}滿足an=4log2bn+3,n∈N*
(1)求an,bn
(2)求數(shù)列{an?bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案