20.復(fù)數(shù)z=2-i在復(fù)平面對應(yīng)的點(diǎn)在第幾象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由復(fù)數(shù)z求出在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)的坐標(biāo)得答案.

解答 解:復(fù)數(shù)z=2-i在復(fù)平面對應(yīng)的點(diǎn)的坐標(biāo)為:(2,-1),位于第四象限.
故選:D.

點(diǎn)評 本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-4y≥-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$.
(1)求z=$\frac{y+1}{x+1}$的取值范圍;
(2)求z=|x+y+1|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-2ax+1(a∈R)在[2,+∞)上單調(diào)遞增,
(1)若函數(shù)y=f(2x)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)a的集合A;
(2)若對于任意的a∈[1,2]時(shí),不等式f(2x+1)>3f(2x)+a恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=-$\frac{5}{2}$x+b在區(qū)間(0,2)有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍;
(4)對于n∈N*,證明:$\frac{2}{1^2}+\frac{3}{2^2}+\frac{4}{3^2}+…+\frac{n+1}{n^2}>ln(n+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量$\overrightarrow{m}$=((b+c)2,-1),$\overrightarrow{n}$=(1,a2+bc),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求角A的大;
(2)若a=3,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了了解青少年的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名青少年進(jìn)行調(diào)查,得到如下列聯(lián)表:
常  喝不常喝總  計(jì)
肥  胖2
不肥胖18
總  計(jì)30
已知從這30名青少年中隨機(jī)抽取1名,抽到肥胖青少年的概率為$\frac{4}{15}$.
(1)請將列聯(lián)表補(bǔ)充完整;(2)是否有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān)?
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.當(dāng)實(shí)數(shù)m為何值時(shí),z=$\frac{{m}^{2}-m-6}{m+3}$+(m2+5m+6)i
(1)為虛數(shù); 
(2)復(fù)數(shù)z對應(yīng)的點(diǎn)在復(fù)平面內(nèi)的第二象限內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“現(xiàn)代五項(xiàng)”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動項(xiàng)目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項(xiàng)運(yùn)動.已知甲、乙、丙共三人參加“現(xiàn)代五項(xiàng)”.規(guī)定每一項(xiàng)運(yùn)動的前三名得分都分別為a,b,c(a>b>c且a,b,c∈N*),選手最終得分為各項(xiàng)得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是(  )
A.B.C.D.乙和丙都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a,b∈R,若a>b,則( 。
A.$\frac{1}{a}<\frac{1}$B.lga>lgbC.2a>2bD.a2>b2

查看答案和解析>>

同步練習(xí)冊答案