【題目】已知函數(shù),其中 為自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)a的取值范圍.

【答案】(Ⅰ)見詳解;(Ⅱ)

【解析】

(Ⅰ)由求導(dǎo)可得:,因?yàn)?/span>可得,再根據(jù)兩者的大小關(guān)系進(jìn)行分類討論可得函數(shù)的單調(diào)區(qū)間;

(Ⅱ)由已知可得上恒成立,再分類討論時(shí),時(shí)和時(shí)函數(shù)的最小值,由即可求解.

(Ⅰ)由求導(dǎo)可得:

.

可得,且,

①當(dāng)時(shí),即,

當(dāng)時(shí),在此區(qū)間單調(diào)遞增;

當(dāng)時(shí),在此區(qū)間單調(diào)遞減;

②當(dāng)時(shí),即,

當(dāng)時(shí),在此區(qū)間單調(diào)遞增;

當(dāng)時(shí),在此區(qū)間單調(diào)遞減;

③當(dāng)時(shí),即,

,R上單調(diào)遞增;

(Ⅱ)由已知可得上恒成立.

①當(dāng)時(shí),由(Ⅰ)可知上單調(diào)遞增,

,解得:,

;

②當(dāng)時(shí),即

由(Ⅰ)可知上單調(diào)遞增,在上單調(diào)遞減,

解得,;

③當(dāng)時(shí),即,

由(Ⅰ)可知上單調(diào)遞減,

,

,解得,此種情況a無解.

綜上,a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若的極小值為,求的值;

(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在上),與,圍成三角形區(qū)域.

(1)設(shè),,求三角形區(qū)域周長的函數(shù)解析式;

(2)現(xiàn)計(jì)劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.

1)求實(shí)數(shù)a,b的值;

2)設(shè),若不等式在區(qū)間上恒成立,求實(shí)數(shù)k的取值范圍;

3)設(shè)),若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).

(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)若的兩個(gè)不同的根,是否存在實(shí)數(shù),使成立?若存在,求的值;若不存在,請(qǐng)說明理由.

2)設(shè),函數(shù)已知方程恰有3個(gè)不同的根.

)求的取值范圍;

)設(shè)分別是這3個(gè)根中的最小值與最大值,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)log4(4x1)kx(k∈R)是偶函數(shù).

(1)k的值;

(2)設(shè)g(x)log4,若函數(shù)f(x)g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正方形與矩形所在平面互相垂直,分別為的中點(diǎn),

1)求證:平面

2)求證:平面;

(3)在線段上是否存在一點(diǎn),使得?若存在,求出的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案