11.已知點(diǎn)P(a,b)關(guān)于直線l的對(duì)稱點(diǎn)為Q(3-b,3-a),則直線l的方程是( 。
A.x+y-3=0B.x+y+b-a=0C.x+y-a-b=0D.x-y+3=0

分析 利用中點(diǎn)坐標(biāo)和兩條直線的斜率乘積為-1,即可求直線l的方程.

解答 解:點(diǎn)P(a,b)關(guān)于直線l的對(duì)稱點(diǎn)為Q(3-b,3-a),
可得中點(diǎn)坐標(biāo)為($\frac{3-b+a}{2}$,$\frac{3-a+b}{2}$)
斜率${k}_{PQ}=\frac{3-a-b}{3-b-a}=1$,
∴直線l的斜率kl=-1,
故得y-$\frac{3-a+b}{2}$=-1(x-$\frac{3-b+a}{2}$).
整理得:x+y-3=0.
故選A

點(diǎn)評(píng) 本題考查了直線關(guān)于直線的對(duì)稱直線方程的求法,考查了中點(diǎn)坐標(biāo)的運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=x3+(a-1)x2是奇函數(shù),則不等式f(ax)>f(a-x)的解集是{x|x>$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求值:${log_2}^3•{log_3}^4+{({log_2}^{48}-{log_2}^3)^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,VA=VB=4,AC=BC=2且AC⊥BC,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB;
(3)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某人開車去上班,開始勻速前行,后來為了趕時(shí)間加速前行,則下列圖象與描述的事件最吻合的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=12,BC=10,AA1=8,過點(diǎn)A1、D1的平面α與棱AB和CD分別交于點(diǎn)E、F,四邊形A1EFD1為正方形.
(1)在圖中請(qǐng)畫出這個(gè)正方形(注意虛實(shí)線,不必寫作法),并求AE的長(zhǎng);
(2)問平面α右側(cè)部分是什么幾何體,并求其體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若正四棱錐的底面邊長(zhǎng)為2(單位:cm),側(cè)面積為8(單位:cm2),則它的體積為$\frac{4\sqrt{3}}{3}$(單位:cm3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.方程$|x|-2=\sqrt{4-{{({y-2})}^2}}$表示的曲線是( 。
A.一個(gè)圓B.半圓C.兩個(gè)圓D.兩個(gè)半圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合M={x|x=$\frac{k}{2}$+$\frac{1}{4}$,k∈Z},N={x|x=$\frac{k}{4}$+$\frac{1}{2}$,k∈Z},若x0∈M,則x0與N的關(guān)系是x0∈N.

查看答案和解析>>

同步練習(xí)冊(cè)答案