精英家教網 > 高中數學 > 題目詳情
下表提供了某廠節(jié)能降耗技術改造后生產產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)標準煤的幾組對照數據:
x3456
y2.5344.5
(1)求y關于x的線性回歸方程;(已知b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

(2)已知該廠技術改造前100噸甲產品能耗為90噸標準煤,試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低了多少噸標準煤.
(1)∵
.
x
=
1
4
(3+4+5+6)=4.5
(噸),
.
y
=
1
4
(2.5+3+4+4.5)=3.5
(噸),
4
i=1
xiyi=3×2.5+4×3+5×4+6×4.5=66.5

4
i=1
x2i
=9+16+25+36=86
,
b=
4
i=1
xiyi-4
.
x
.
y
4
i=1
xi2-4
.
x
2
=
66.5-4×4.5×3.5
86-4×4.52
=0.7

∴a=
.
y
-0.7×
.
x
=3.5-0.7×4.5=0.35,
∴y關于x的回歸方程為
?
y
=0.7x+0.35
;
(2)由(1)可知技術改造后100噸甲產品的生產能耗約為0.7×100+0.35=70.35(噸),
∵技術改造前100噸甲產品的生產能耗為90噸,
∴降低的能耗約為90-70.35=19.65(噸),
即預測生產100噸甲產品的生產能耗比技術改造前降低了19.65噸標準煤.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應數據:
x
2
4
5
6
8
y
30
40
60
50
70
(1)求線性回歸方程;
(2)預測當廣告費支出7(百萬元)時的銷售額。
(用最小二乘法求線性回歸方程系數公式

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在研究硝酸鈉的可溶性程度時,對于不同的溫度觀測它在水中的溶解度,得觀測結果如下:
溫度(x)010203040
溶解度(y)65748796103
(1)畫出散點圖;
(2)求出線性回歸方程
y
=bx+a;
(3)當溫度為70度時,試估算此時硝酸鈉的溶解度為多少?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

“回歸”這個詞是由英國著名的統(tǒng)計學家FrancilsGalton提出來的.1889年,他在研究祖先與后代身高之間的關系時發(fā)現,身材較高的父母,他們的孩子也較高,但這些孩子的平均身高并沒有他們父母的平均身高高;身材較矮的父母,他們的孩子也較矮,但這些孩子的平均身高卻比他們的父母的平均身高高.Galton把這種后代的身高向中間值靠近的趨勢稱為“回歸現象”.根據他研究的結果,在兒子的身高y與父親的身高x的回歸方程
y
=a+bx
中,b的值(  )
A.在(-1,0)內B.在(-1,1)內C.在(0,1)內D.在[1,+∞)內

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

一次社會實踐活動中,統(tǒng)計出學生訓練時間x(小時),與制作手工藝品個數y(個)如下表:
訓練時間23456
制作個數35557
通過畫散點圖已經知道y與x正相關,試求出線性回歸直線方程______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知兩個變量x,y之間具有線性相關關系,試驗測得(x,y)的四組值分別為(1,2),(2,4),(3,5),(4,7),則y與x之間的回歸直線方程為(  )
A.y=0.8x+3B.y=-1.2x+7.5
C.y=1.6x+0.5D.y=1.3x+1.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

四名同學根據各自的樣本數據研究變量x,y之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:
①y與x負相關且
y
=2.347x-6.423;
②y與x負相關且
y
=-3.476x+5.648;
③y與x正相關且
y
=5.437x+8.493;
④y與x正相關且
y
=-4.326x-4.578.
其中一定不正確的結論的序號是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(℃)1011131286
就診人數y(人)222529261612
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(Ⅰ)求選取的2組數據恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線性回歸方程y=bx+a;
(Ⅲ)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

甲乙兩個班級進行一門考試,按照學生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:
班級與成績列聯(lián)表
利用列聯(lián)表的獨立性檢驗判斷,是否能夠以99%的把握認為“成績與班級有關系”
附表:K2的臨界值表:
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步練習冊答案