函數(shù)y=ax-4+1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0上,其中m,n均為正數(shù),則
1
m
+
2
n
的最小值為
 
分析:根據(jù)指數(shù)函數(shù)的性質(zhì)先求出A的坐標(biāo),代入直線方程可得m、n的關(guān)系,再利用1的代換結(jié)合均值不等式求解即可.
解答:解:∵x=4時(shí),y=2,
∴函數(shù)y=ax-4+1(a>0,且a≠1)的圖象恒過定點(diǎn)(4,2)即A(4,2),
∵點(diǎn)A在直線mx+ny-1=0上,
即4m+2n=1,
∵mn>0,
∴m>0,n>0,
1
m
+
2
n
=(
1
m
+
2
n
)(4m+2n)=8+
2n
m
+
8m
n
≥16,
當(dāng)且僅當(dāng)n=2m時(shí)取等號(hào).
故答案為:16.
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)的性質(zhì)和均值不等式等知識(shí)點(diǎn),運(yùn)用了整體代換思想,是高考考查的重點(diǎn)內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

函數(shù)y=ax-4+1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0上,其中m,n均為正數(shù),則數(shù)學(xué)公式的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=ax-4+1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0上,其中m,n均為正數(shù),則
1
m
+
2
n
的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省南通市海安縣曲塘中學(xué)高三數(shù)學(xué)熱身試卷(解析版) 題型:解答題

函數(shù)y=ax-4+1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0上,其中m,n均為正數(shù),則的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省高考數(shù)學(xué)模擬試卷精編(解析版) 題型:解答題

函數(shù)y=ax-4+1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-1=0上,其中m,n均為正數(shù),則的最小值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案