【題目】在棱長為1的正方體ABCDA1B1C1D1中,E為棱BC的中點,點F是棱CD上的動點,試確定點F的位置,使得D1E⊥平面AB1F.

【答案】解:如圖建立空間直角坐標系:
則A(1,0,0),B1(1,1,1),
D1(0,0,1),E( ,1,0).
設F(0,y,0),則 =(0,1,1),
=(﹣1,y,0), =( ,1,﹣1),
要使D1E⊥平面AB1F,
只需: ,
即: ,
即:y=
∴當F為CD中點時,有D1E⊥平面AB1F.

【解析】建立空間直角坐標系,表示出直線D1E所在的向量與AF,AB1所在的向量,利用線面垂直關系得到向量的數(shù)量積為0,進而得到答案.
【考點精析】關于本題考查的直線與平面垂直的性質,需要了解垂直于同一個平面的兩條直線平行才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓經(jīng)過橢圓的焦點.

1)求橢圓的標準方程;

2)設直線交橢圓兩點,為弦的中點,,記直線的斜率分別為,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在R上的偶函數(shù)f(x),滿足對任意x∈R都有f(t)=f(2﹣t)且x∈(0,1]時,f(x)= ,a=f( ),b=f( ),c=f( ),用“<“表示a,b,c的大小關系是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學隨機選取了名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.

(Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);

假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;

(Ⅲ)在樣本中,從身高在(單位: )內的男生中任選兩人,求這兩人的身高都不低于的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=|2x+ |+a|x |

)當a=﹣1時,解不等式fx≤3x;

)當a=2時,若關于x的不等式2fx+1|1﹣b|的解集為空集,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,EAB的中點.

(Ⅰ)求證:AN∥平面MEC;

(Ⅱ)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長h;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面ABB1A1⊥底面ABC,CA=CB,D,E,F(xiàn)分別為AB,A1D,A1C的中點,點G在AA1上,且A1D⊥EG.

(1)求證:CD∥平面EFG;
(2)求證:A1D⊥平面EFG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某媒體為了解某地區(qū)大學生晚上放學后使用手機上網(wǎng)情況,隨機抽取了100名大學生進行調查.如圖是根據(jù)調查結果繪制的學生每晚使用手機上網(wǎng)平均所用時間的頻率分布直方圖.將時間不低于40分鐘的學生稱為“手機迷”.

(1)樣本中“手機迷”有多少人?
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認為“手機迷”與性別有關?
(3)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學 生中,采用隨機抽樣方法每次抽取1名大學生,抽取3次,經(jīng)調查一名“手機迷”比“非手機迷”每月的話費平均多40元,記被抽取的3名大學生中的“手機迷”人數(shù)為X,且設3人每月的總話費比“非手機迷”共多出Y元,若每次抽取的結果是相互獨立的,求X的分布列和Y的期望EY

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a∈R).
(1)若不等式f(x)<1的解集為(﹣1,4),求a的值;
(2)設a≤0,解關于x的不等式f(x)>0.

查看答案和解析>>

同步練習冊答案