【題目】根據(jù)中國生態(tài)環(huán)境部公布的2017年、2018年長江流域水質(zhì)情況監(jiān)測(cè)數(shù)據(jù),得到如下餅圖:

則下列說法錯(cuò)誤的是(

A.2018年的水質(zhì)情況好于2017年的水質(zhì)情況

B.2018年與2017年相比較,Ⅰ、Ⅱ類水質(zhì)的占比明顯增加

C.2018年與2017年相比較,占比減小幅度最大的是Ⅳ類水質(zhì)

D.2018年Ⅰ、Ⅱ類水質(zhì)的占比超過

【答案】C

【解析】

根據(jù)餅圖逐一判斷.

A2018年Ⅰ、Ⅱ類水質(zhì)的占比明顯超過2017年Ⅰ、Ⅱ類水質(zhì)的占比,故正確;

B2018年Ⅰ、Ⅱ類水質(zhì)的占比達(dá)到60.4%,而2017年Ⅰ、Ⅱ類水質(zhì)的占比為46.4%,故正確;

C. 2018年與2017年相比較,占比減小幅度最大的是III類水質(zhì),故錯(cuò)誤;

D. 2018年Ⅰ、Ⅱ類水質(zhì)的占比達(dá)到60.4%,超過,故正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且

1)求數(shù)列的通項(xiàng)公式;

2)若等差數(shù)列滿足,且,成等比數(shù)列,求c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.

(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

(2)從該銷售公司隨機(jī)選取一名推銷員,對(duì)他(或她)過去兩年的銷售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:

月銷售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作之一,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積(弦),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中指圓弧所對(duì)弦長,等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于6米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約為(

A.12平方米B.16平方米C.20平方米D.24平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大豆,古稱菽,原產(chǎn)中國,在中國已有五千年栽培歷史.2019年春,為響應(yīng)中國大豆參與世界貿(mào)易的競爭,某市農(nóng)科院積極研究,加大優(yōu)良品種的培育工作,其中一項(xiàng)基礎(chǔ)工作就是研究晝夜溫差大小與大豆發(fā)芽率之間的關(guān)系.為此科研人員分別記錄了7天中每天50粒大豆的發(fā)芽數(shù)得如下數(shù)據(jù)表格:

日期

43

44

45

46

47

48

49

溫差

8

9

10

12

11

8

13

發(fā)芽數(shù)(粒)

21

25

26

32

27

20

33

科研人員確定研究方案是:從7組數(shù)據(jù)中選5組數(shù)據(jù)求線性回歸方程,再用求得的回歸方程對(duì)剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是44日至48日五天數(shù)據(jù),據(jù)此求關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)的誤差絕對(duì)值均不超過1粒,則認(rèn)為得到的線性回歸方程是可靠的,請(qǐng)檢驗(yàn)(1)中回歸方程是否可靠?

注:.

參考數(shù)值:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點(diǎn)為棱的中點(diǎn).

(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說明理由;

(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,設(shè)函數(shù).

1)求函數(shù)的最大值;

2)已知在銳角中,角,,所對(duì)的邊分別是,且滿足的外接圓半徑為,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè),分別是正方體的棱上兩點(diǎn),且,,其中正確的命題為(

A.三棱錐的體積為定值

B.異面直線所成的角為

C.平面

D.直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營了來自中國的小龍蝦,這些小龍蝦標(biāo)有等級(jí)代碼.為得到小龍蝦等級(jí)代碼數(shù)值與銷售單價(jià)之間的關(guān)系,經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):

等級(jí)代碼數(shù)值

38

48

58

68

78

88

銷售單價(jià)(/kg)

16.8

18.8

20.8

22.8

24

25.8

(1)已知銷售單價(jià)與等級(jí)代碼數(shù)值之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程(系數(shù)精確到0.1);

(2)若莫斯科某個(gè)餐廳打算從上表的6種等級(jí)的中國小龍蝦中隨機(jī)選2種進(jìn)行促銷,記被選中的2種等級(jí)代碼數(shù)值在60以下(不含60)的數(shù)量為,求的分布列及數(shù)學(xué)期望.

參考公式:對(duì)一組數(shù)據(jù),,,其回歸直線的斜率和截距最小二乘估計(jì)分別為:,.

參考數(shù)據(jù):,.

查看答案和解析>>

同步練習(xí)冊(cè)答案