(本題滿分15分)已知函數(shù)定義域?yàn)?img width=44 height=23 src="http://thumb.zyjl.cn/pic1/1899/sx/136/161936.gif">(),設(shè).

(Ⅰ)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);

(Ⅱ)求證:;

(Ⅲ)求證:對(duì)于任意的,總存在,滿足,并確定這樣的的個(gè)數(shù) (其中為函數(shù)的導(dǎo)函數(shù)) .

(1)(2)見(jiàn)解析(3)當(dāng)時(shí),一解;當(dāng)時(shí),二解。


解析:

(Ⅰ) 函數(shù)的導(dǎo)函數(shù),欲使得函數(shù)上為單調(diào)函數(shù),因當(dāng)時(shí),,當(dāng)時(shí),,故只要時(shí),恒成立,可得。…

(Ⅱ)當(dāng)時(shí),,又時(shí),,時(shí),時(shí),,所以時(shí),是函數(shù)上的極小值,時(shí),是函數(shù)上的極大值,當(dāng)時(shí),有,而,由,時(shí)由單調(diào)性知!

(Ⅲ) 對(duì)于任意的,,而

⑴當(dāng)時(shí),上單調(diào)遞減,只要證

,

①,由知①顯然成立,且有唯一解!

⑵當(dāng)時(shí),只要證,只要證,顯然成立。

當(dāng),即時(shí),一解,當(dāng)時(shí),

二解

⑶當(dāng)時(shí),只要證,

即證,顯然成立。

當(dāng)時(shí),即時(shí),二解,當(dāng),即,一解。

綜合以上,當(dāng)時(shí),一解;當(dāng)時(shí),二解!分。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題滿分15分)已知點(diǎn)(0,1),,直線、都是圓的切線(點(diǎn)不在軸上).
(Ⅰ)求過(guò)點(diǎn)且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(1,0)作直線與(Ⅰ)中的拋物線相交于兩點(diǎn),問(wèn)是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)

已知命題p,命題q. 若“pq”為真命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知函數(shù)

(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;

(Ⅲ)當(dāng),且時(shí),證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點(diǎn)A,B,

(1)當(dāng)直線的斜率為1時(shí),求線段AB的長(zhǎng);

(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線對(duì)稱(chēng),問(wèn)是否存在直線使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿分15分)已知直線,曲線

   (1)若且直線與曲線恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;

   (2)若,直線與曲線M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來(lái)源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案