生產A,B兩種元件,其質量按測試指標劃分為:指標大于或等于82為正品,小于82為
次品,現(xiàn)隨機抽取這兩種元件各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標 | |||||
元件A | 8 | 12 | 40 | 32 | 8 |
元件B | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)元件A為正品的概率為 ,元件B為正品的概率為
(Ⅱ)(i)
(ii)所以的分布列為:150 90 30 -30
解析試題分析:(Ⅰ)用頻率估計概率值;
(Ⅱ)設出隨機變量,確定隨機變量的所有可能取值,求出各個取值的概率,列出概率分布表,從而得出答案.
試題解析:(Ⅰ)由題可知 元件A為正品的概率為 ,元件B為正品的概率為。 2分
(Ⅱ)(i)設生產的5件元件中正品件數(shù)為,則有次品5件,由題意知得到,設“生產5件元件B所獲得的利潤不少于300元”為事件,則。 6分
(ii)隨機變量的所有取值為150,90,30,-30,
則,,,
,
所以的分布列為:
10分150 90 30 -30
12分
考點:1概率;2、隨機變量的分布率;3、數(shù)學期望.
科目:高中數(shù)學 來源: 題型:解答題
一批產品需要進行質量檢驗,檢驗方案是:先從這批產品中任取4件作檢驗,這4件產品中優(yōu)質品的件數(shù)記為n.如果n=3,再從這批產品中任取4件作檢驗,若都為優(yōu)質品,則這批產品通過檢驗;如果n=4,再從這批產品中任取1件作檢驗,若為優(yōu)質品,則這批產品通過檢驗;其他情況下,這批產品都不能通過檢驗.
假設這批產品的優(yōu)質品率為50%,即取出的每件產品是優(yōu)質品的概率都為,且各件產品是否為優(yōu)質品相互獨立.
(1)求這批產品通過檢驗的概率;
(2)已知每件產品的檢驗費用為100元,且抽取的每件產品都需要檢驗,對這批產品作質量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩名教師進行乒乓球比賽,采用七局四勝制(先勝四局者獲勝).若每一局比賽甲獲勝的概率為,乙獲勝的概率為,現(xiàn)已賽完兩局,乙暫時以2∶0領先.
(1)求甲獲得這次比賽勝利的概率;
(2)設比賽結束時比賽的局數(shù)為隨機變量X,求隨機變量X的概率分布和數(shù)學期望EX.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩名同學參加“漢字聽寫大賽”選拔測試,在相同測試條件下,兩人5次測試的成績(單位:分)如下表:
(Ⅰ)請畫出甲、乙兩人成績的莖葉圖. 你認為選派誰參賽更好?說明理由(不用計算);
(Ⅱ)若從甲、乙兩人5次的成績中各隨機抽取一個成績進行分析,設抽到的兩個成績中,90分以上的個數(shù)為,求隨機變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了了解某市工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從三個區(qū)中抽取6個工廠進行調查.已知區(qū)中分別有27,18,9個工廠.
(Ⅰ)求從區(qū)中應分別抽取的工廠個數(shù);
(Ⅱ)若從抽得的6個工廠中隨機地抽取2個進行調查結果的對比,求這2個工廠中至少有1個來自區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某學校的三個學生社團的人數(shù)分布如下表(每名學生只能參加一個社團):
| 圍棋社 | 舞蹈社 | 拳擊社 |
男生 | 5 | 10 | 28 |
女生 | 15 | 30 | m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
電子蛙跳游戲是:青蛙第一步從如圖所示的正方體頂點起跳,每步從一頂點跳到相鄰的頂點.
(1)求跳三步跳到的概率;
(2)青蛙跳五步,用表示跳到過的次數(shù),求隨機變量的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某社區(qū)舉辦防控甲型H7N9流感知識有獎問答比賽,甲、乙、丙三人同時回答一道衛(wèi)生知識題,三人回答正確與錯誤互不影響。已知甲回答這題正確的概率是,甲、丙兩人都回答錯誤的概率是,乙、丙兩人都回答正確的概率是.
(I)求乙、丙兩人各自回答這道題正確的概率;
(II)用表示回答該題正確的人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com