已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式對(duì)?x∈R,ax2-ax+1>0恒成立,若命題p或q為真命題,p且q為假命題,求a的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:先根據(jù)指數(shù)函數(shù)的單調(diào)性,及一元二次不等式解的情況和判別式△的關(guān)系求出命題p,q下a的取值范圍,然后根據(jù)p或q為真命題,p且q為假命題得到p真q假,和p假q真兩種情況,求出每種情況下的a的取值范圍再求并集即可.
解答: 解:命題p:首先a>0,∵y=ax在R上單調(diào)遞增,∴a>1;
命題q:若a=0,原不等式變成1>0,滿足對(duì)?x∈R,1>0恒成立;
若a≠0,則:
a>0
a2-4a<0
,解得0<a<4,∴0≤a<4;
若命題p或q為真命題,p且q為假命題,則p,q一真一假;
p真q假時(shí),
a>1
a<0,或a≥4
,∴a≥4;
p假q真時(shí),
0<a≤1
0≤a<4
,∴0<a≤1;
∴a的取值范圍為(0,1]∪[4,+∞).
點(diǎn)評(píng):考查指數(shù)函數(shù)的單調(diào)性,一元二次不等式解的情況和判別式△的關(guān)系,p或q,p且q的真假和p,q真假的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意a∈[3,4],函數(shù)f(x)在R上都有三個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
2
x+ln
e
2
,g(x)=
3x
2
-
2
x
-f(x).
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)h(x)=x2-mx+4,若存在x1∈(0,1],對(duì)任意的x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩個(gè)向量
e1
,
e2
,滿足|
e1
|=1,|
e2
|=1,
e1
,
e2
滿足向量
a
=k
e1
+
e2
,
b
=
e1
-k
e2
,若
e1
e2
的數(shù)量積用含有k的代數(shù)式f(k)表示.若|
a
|=
3
|
b
|.
(1)求f(k);
(2)若
e1
e2
的夾角為60°,求k值;
(3)若
a
b
的垂直,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了對(duì)學(xué)生的語(yǔ)文、英語(yǔ)的綜合閱讀能力進(jìn)行分析,在全體學(xué)生中隨機(jī)抽出5位學(xué)生的成績(jī)作為樣本,這5位學(xué)生的語(yǔ)文、英語(yǔ)的閱讀能力等級(jí)得分(6分制)如下表:
x(語(yǔ)文閱讀能力)23456
y(英語(yǔ)閱讀能力)1.534.556
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
?
y
=bx+a

(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)語(yǔ)文閱讀能力為3.5的學(xué)生的英語(yǔ)閱讀能力等級(jí).
(注:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
, 
?
a
=
.
y
-
?
b
 
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,CD是△ABC中AB邊上的高,以AD為直徑的圓交AC于點(diǎn)E,一BD為直徑的圓交BC于點(diǎn)F.
(Ⅰ)求證:E、D、F、C四點(diǎn)共圓;
(Ⅱ)若BD=5,CF=
16
3
,求四邊形EDFC外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程是ρ-2cosθ-4sinθ=0,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程是
x=
1
2
t
y=2+
3
2
t
(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線l的參數(shù)方程化為普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),與y軸交于點(diǎn)E,求|EA|+|EB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:函數(shù)y=log2+ax為減函數(shù);命題q:關(guān)于x的方程x2-ax+
1
2
=0有解.若命題p和q中有且僅有一個(gè)為真命題,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=4x+
a2
x
+7,若f(x)≥a+1對(duì)一切x≥0成立,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案