【題目】如果P1 , P2 , …,Pn是拋物線C:y2=8x上的點(diǎn),它們的橫坐標(biāo)依次為x1 , x2 , …,xn , F是拋物線C的焦點(diǎn),若x1+x2+…+xn=8,則|P1F|+|P2F|+…+|PnF|=(
A.n+10
B.n+8
C.2n+10
D.2n+8

【答案】D
【解析】解:∵P1 , P2 , …,Pn是拋物線C:y2=8x上的點(diǎn), 它們的橫坐標(biāo)依次為x1 , x2 , …,xn , F是拋物線C的焦點(diǎn),
x1+x2+…+xn=8,
∴|P1F|+|P2F|+…+|PnF|
=(x1+2)+(x2+2)+…+(xn+2)
=x1+x2+…+xn+2n
=2n+8.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax2+1(a>0且a≠1)的圖象恒過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(x2+x+1)(1﹣x)4展開式中x2的系數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個結(jié)論:
(1)兩條直線都和同一個平面平行,則這兩條直線平行;
(2)兩條直線沒有公共點(diǎn),則這兩條直線平行;
(3)兩條直線都和第三條直線垂直,則這兩條直線平行;
(4)一條直線和一個平面內(nèi)無數(shù)條直線沒有公共點(diǎn),則這條直線和這個平面平行.
其中正確的個數(shù)為( 。
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2 , 若對任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)列如下:P1(1,1),P2(1,2),P3(2,1),P4(1,3),P5(2,2),P6(3,1),P7(1,4),P8(2,3),P9(3,2),P10(4,1),P11(1,5),P12(2,4),…,則P60的坐標(biāo)為(
A.(3,8)
B.(4,7)
C.(4,8)
D.(5,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察(x2)′=2x,(x4)′=4x3 , (cosx)′=﹣sinx,由歸納推理可得:若定義在R上的函數(shù)f(x)滿足f(﹣x)=f(x),記g(x)為f(x)的導(dǎo)函數(shù),則g(﹣x)=(
A.﹣g(x)
B.f(x)
C.﹣f(x)
D.g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣mx+3,若f′(1)=0,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣3|(a∈R).
(Ⅰ)當(dāng)a=1時,求不等式f(x)≥x+8的解集;
(Ⅱ)若函數(shù)f(x)的最小值為5,求a的值.

查看答案和解析>>

同步練習(xí)冊答案