20.空間中,設(shè)m,n表示直線,α,β,γ表示平面,則下列命題正確的是( 。
A.若α⊥γ,β⊥γ,則α∥βB.若m⊥α,m⊥β,則α∥βC.若m⊥β,α⊥β,則m∥αD.若n⊥m,n⊥α,則m∥α

分析 本題研究線線、線面、面面之間的位置關(guān)系,A,B兩個(gè)選項(xiàng)研究面面之間的位置關(guān)系,B、D選項(xiàng)研究線面之間的位置關(guān)系,對(duì)四個(gè)選項(xiàng)依次用相關(guān)的知識(shí)判斷其正誤即可.

解答 解:對(duì)于A選項(xiàng),若α⊥γ,β⊥γ,則α∥β,不正確,在此條件下,兩平面α,β可以相交,
對(duì)于B選項(xiàng),若 m⊥α,m⊥β,則 α∥β,根據(jù)垂直于同一條直線的兩個(gè)平面平行,正確,
對(duì)于C選項(xiàng),m⊥β,α⊥β,則 m∥α,同時(shí)垂直于一個(gè)平面的直線和平面的位置關(guān)系可以是直線在平面內(nèi)或平行,故C不正確,
對(duì)于D選項(xiàng),n⊥m,n⊥α,則 m∥α,由同時(shí)垂直于一條直線的直線和平面的位置關(guān)系可以是直線在平面內(nèi)或平行,故D不正確.
故選B.

點(diǎn)評(píng) 本題考點(diǎn)是命題的真假判斷與應(yīng)用,考查綜合利用平面的基本性質(zhì)來判斷線線之間,線面之間,面面之間的位置關(guān)系,屬于基本題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=-1+loga(x+3)(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中m,n均大于0,則$\frac{1}{m}+\frac{2}{n}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.復(fù)數(shù)z滿足$\frac{z}{1+2i}$=1-2i(i是虛數(shù)單位),則z的虛部是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow$=(y,2),若向量$\overrightarrow{a}$,$\overrightarrow$同向,則x+y的最小值為( 。
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)數(shù)列{an}是等比數(shù)列,公比q=2,Sn為{an}的前n項(xiàng)和,記Tn=$\frac{9{S}_{n}-{S}_{2n}}{{a}_{n+1}}$(n∈N*),則數(shù)列{Tn}最大項(xiàng)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點(diǎn)坐標(biāo)為( 。
A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(2,-3).若($\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),則實(shí)數(shù)m=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$y=\frac{1}{{\sqrt{6-x-{x^2}}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-3,2]B.[-3,2)C.(-3,2)D.(-3,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系x0y中,以0為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為$ρcos(θ-\frac{π}{3})=1$,M,N分別為C與x軸,y軸的交點(diǎn).(0≤θ<2π)
(1)寫出C的直角坐標(biāo)方程;
(2)設(shè)線段MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案