設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)M(-1,0)的直線在第一象限交拋物線于A、B,使,則直線AB的斜率(  )
         B     C      D 
B
本題考查直線和拋物線的綜合應(yīng)用。設(shè)直線AB方程為,A,B,由借助根與系數(shù)關(guān)系得:=1,,又所以=0,得斜率
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知的三個(gè)頂點(diǎn)在拋物線:上運(yùn)動(dòng),
(1). 求的焦點(diǎn)坐標(biāo);
(2). 若點(diǎn)在坐標(biāo)原點(diǎn), 且,點(diǎn)上,且 
求點(diǎn)的軌跡方程;
(3). 試研究: 是否存在一條邊所在直線的斜率為的正三角形,若存在,求出這個(gè)正三角形的邊長(zhǎng),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的焦點(diǎn)為F、頂點(diǎn)為O、準(zhǔn)線與對(duì)稱軸的交點(diǎn)為K,分別過F、O、K的三條平行直線被拋物線所截得的弦長(zhǎng)依次為,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分) 設(shè)拋物線C1x2=4y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對(duì)稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過點(diǎn)P作C1的兩條切線PA,PB,切點(diǎn)A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

AB是拋物線的一條焦點(diǎn)弦,|AB|=4,則AB中點(diǎn)C的橫坐標(biāo)是( )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

21.(本小題滿分14分)
已知直線過拋物線的焦點(diǎn)且與拋物線相交于兩點(diǎn),自向準(zhǔn)線作垂線,垂足分別為 
(1)求拋物線的方程;
(2)證明:無論取何實(shí)數(shù)時(shí),,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

   已知為拋物線的焦點(diǎn),點(diǎn)為其上一點(diǎn),點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱,直線與拋物線交于異于M,N的A,B兩點(diǎn),且
(I)求拋物線方程和N點(diǎn)坐標(biāo);
(II)判斷直線中,是否存在使得面積最小的直線,若存在,求出直線的方程和面積的最小值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線方程為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

當(dāng)為任何值時(shí),直線恒過定點(diǎn)P,則過P點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為    

查看答案和解析>>

同步練習(xí)冊(cè)答案