【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(﹣1,0)、F2(1,0),短軸的兩個(gè)端點(diǎn)分別為B1 , B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長(zhǎng)為2,過(guò)點(diǎn)F2的直線(xiàn)l與橢圓C相交于P,Q兩點(diǎn),且 ,求直線(xiàn)l的方程.
【答案】
(1)解:設(shè)橢圓C的方程為 .
根據(jù)題意知 ,解得 ,
故橢圓C的方程為 .
(2)解:由2b=2,得b=1,所以a2=b2+c2=2,得橢圓C的方程為 .
當(dāng)直線(xiàn)l的斜率不存在時(shí),其方程為x=1,不符合題意;
當(dāng)直線(xiàn)l的斜率存在時(shí),設(shè)直線(xiàn)l的方程為y=k(x﹣1).
由 ,得(2k2+1)x2﹣4k2x+2(k2﹣1)=0.
設(shè)P(x1,y1),Q(x2,y2),則
,
因?yàn)? ,所以 ,即
=
=
= ,解得 ,即k= .
故直線(xiàn)l的方程為 或 .
【解析】(1)由△F1B1B2為等邊三角形可得a=2b,又c=1,集合a2=b2+c2可求a2 , b2 , 則橢圓C的方程可求;(2)由給出的橢圓C的短軸長(zhǎng)為2,結(jié)合c=1求出橢圓方程,分過(guò)點(diǎn)F2的直線(xiàn)l的斜率存在和不存在討論,當(dāng)斜率存在時(shí),把直線(xiàn)方程和橢圓方程聯(lián)立,由根與系數(shù)關(guān)系寫(xiě)出兩個(gè)交點(diǎn)的橫坐標(biāo)的和,把 轉(zhuǎn)化為數(shù)量積等于0,代入坐標(biāo)后可求直線(xiàn)的斜率,則直線(xiàn)l的方程可求.
【考點(diǎn)精析】本題主要考查了一般式方程和橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握直線(xiàn)的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0);橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司制定了一個(gè)激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷(xiāo)售利潤(rùn)不超過(guò)10萬(wàn)元時(shí),按銷(xiāo)售利潤(rùn)的16%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷(xiāo)售利潤(rùn)超過(guò)10萬(wàn)元時(shí),若超出A萬(wàn)元,則超出部分按2log5(A+1)進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金y(單位:萬(wàn)元),銷(xiāo)售利潤(rùn)x(單位:萬(wàn)元)
(1)寫(xiě)出該公司激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案的函數(shù)模型;
(2)如果業(yè)務(wù)員老張獲得5.6萬(wàn)元的獎(jiǎng)金,那么他的銷(xiāo)售利潤(rùn)是多少萬(wàn)元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1的正六邊形ABCDEF中,記以A為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量分別為 、 、 、 、 ;以D為起點(diǎn),其余頂點(diǎn)為終點(diǎn)的向量分別為 、 、 、 、 .若m、M分別為( + + )( + + )的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},則m、M滿(mǎn)足( )
A.m=0,M>0
B.m<0,M>0
C.m<0,M=0
D.m<0,M<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線(xiàn)BC′平行于平面D′AC,并求直線(xiàn)BC′到平面D′AC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|﹣|x+c|.?dāng)?shù)列a1 , a2 , a3 , …滿(mǎn)足an+1=f(an),n∈N* .
(1)若a1=﹣c﹣2,求a2及a3;
(2)求證:對(duì)任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集為R,函數(shù) 的定義域?yàn)镸,則RM為( )
A.[﹣1,1]
B.(﹣1,1)
C.(﹣∞,﹣1]∪[1,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 平面內(nèi)一個(gè)三角形各邊所在的直線(xiàn)都與另一個(gè)平面平行,則這兩個(gè)平面平行;
B. 若兩個(gè)平面平行,則分別位于這兩個(gè)平面的直線(xiàn)也互相平行;
C. 平行于同一個(gè)平面的兩個(gè)平面平行;
D. 若兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線(xiàn)平行于另一個(gè)平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫(xiě)有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說(shuō):“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說(shuō):“我與丙的卡片上相同的數(shù)字不是1”,丙說(shuō):“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)已知過(guò)原點(diǎn)的動(dòng)直線(xiàn)與圓 相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線(xiàn)段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線(xiàn) 與曲線(xiàn)只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com