函數(shù)y=f(x)在定義域(-,3)內(nèi)的圖像如圖所示.記y=f(x)的導(dǎo)函數(shù)為y=f¢(x),則不等式f¢(x)≤0的解集為                    (    )

 

 

A.[-,1]∪[2,3)                   B.[-1,]∪[,]

C.[-,]∪[1,2)                 D.(-,-]∪[,]∪[,3)

 

【答案】

A

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:廣東省汕頭市澄海中學(xué)2009-2010學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044

某服裝批發(fā)商場(chǎng)經(jīng)營(yíng)的某種服裝,進(jìn)貨成本40元/件,對(duì)外批發(fā)價(jià)定為60元/件.該商場(chǎng)為了鼓勵(lì)購(gòu)買者大批量購(gòu)買,推出優(yōu)惠政策:一次購(gòu)買不超過(guò)50件時(shí),只享受批發(fā)價(jià);一次購(gòu)買超過(guò)50件時(shí),每購(gòu)買1件,購(gòu)買者所購(gòu)買的所有服裝可在享受批發(fā)價(jià)的基礎(chǔ)上,再降低0.1元/件,但最低價(jià)不低于50元/件.

(1)問(wèn)一次購(gòu)買多少件時(shí),售價(jià)恰好是50元/件?

(2)設(shè)購(gòu)買者一次購(gòu)買x件,商場(chǎng)的利潤(rùn)為y元(利潤(rùn)=銷售總額-成本),試寫(xiě)出函數(shù)y=f(x)的表達(dá)式.并說(shuō)明在售價(jià)高于50元/件時(shí),購(gòu)買者一次購(gòu)買多少件,商場(chǎng)利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:寧夏銀川二中2011屆高三第一次月考數(shù)學(xué)理科試題 題型:022

已知函數(shù)y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定域[-π,π],且它們?cè)趚∈[0,π]上的圖象如圖所示,則不等式<0的解集是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 函數(shù)與數(shù)列(2) 題型:044

已知f(x)=(x∈R),P1(x1,y1)、P2(x2,y2)是函數(shù)y=f(x)圖象上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)是

(1)求證:點(diǎn)P的縱坐標(biāo)是定值;

(2)若數(shù)列{an}的通項(xiàng)公式是an=f()(m∈N*,n=1,2,…m),求數(shù)列{an}的前m項(xiàng)和Sm;

(3)在(2)的條件下,若m∈N*時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市某中學(xué)2012屆高三9月月考數(shù)學(xué)試題 題型:044

為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租.該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超出6元,則每超過(guò)1元,租不出的自行車就增加3輛.為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).

(1)求函數(shù)y=f(x)的解析式及其定義域;

(2)試問(wèn)當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試寧夏卷數(shù)學(xué)理科 題型:044

設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(0,f(2))處的切線方程為y=3.

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線yx所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案