【題目】為了解男性家長(zhǎng)和女性家長(zhǎng)對(duì)高中學(xué)生成人禮儀式的接受程度,某中學(xué)團(tuán)委以問(wèn)卷形式調(diào)查了位家長(zhǎng),得到如下統(tǒng)計(jì)表:
男性家長(zhǎng) | 女性家長(zhǎng) | 合計(jì) | |
贊成 | |||
無(wú)所謂 | |||
合計(jì) |
(1)據(jù)此樣本,能否有的把握認(rèn)為“接受程度”與家長(zhǎng)性別有關(guān)?說(shuō)明理由;
(2)學(xué)校決定從男性家長(zhǎng)中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率.
【答案】(1)見(jiàn)解析;(2) .
【解析】試題分析:(1)由表中可知,a,b,c,d,n,代入卡方公式可求得與比較,可得結(jié)論。(2)由題意得知持“贊成”態(tài)度的人數(shù)為2人,持“無(wú)所謂”態(tài)度的人數(shù)為3人,所以由枚舉法與古典概型可求。
試題解析:(1)由題: , , , ,
∴,所以,沒(méi)有的把握認(rèn)為“接受程度”與家長(zhǎng)性別有關(guān).
(2)選出的人中持“贊成”態(tài)度的人數(shù)為: (人)
持“無(wú)所謂”態(tài)度的人數(shù)為: (人)
設(shè)持“贊成”態(tài)度的恩分別為, ;持“無(wú)所謂”態(tài)度的人分別為, ,
基本事件總數(shù)為: , , , , , , , , 共種.
其中至多一人持“贊成”態(tài)度的有: 種∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = ,G是BC的中點(diǎn)。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(2)當(dāng) 取得最大值時(shí),求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 ,若函數(shù)
(1)若,求的極大值與極小值。
(2)若函數(shù)在區(qū)間上是增函數(shù),求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2014 | 2013 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的奇函數(shù).
(1)求的值;
(2)當(dāng),時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不過(guò)第二象限的直線l:ax-y-4=0與圓x2+(y-1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過(guò)點(diǎn)(3,-1)且與直線l平行,直線l2與直線l1關(guān)于直線y=1對(duì)稱,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的點(diǎn)P和線段AC上的點(diǎn)D,滿足PD=DA,PB=BA,則四面體PBCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足|an﹣ |≤1,n∈N* .
(1)求證:|an|≥2n﹣1(|a1|﹣2)(n∈N*)
(2)若|an|≤( )n , n∈N* , 證明:|an|≤2,n∈N* .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)當(dāng)a=4時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)若當(dāng)x∈(1,+∞)時(shí),f(x)>0,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com