(本大題13分)設(shè)、為函數(shù) 圖象上不同的兩個(gè)點(diǎn),
且 AB∥軸,又有定點(diǎn) ,已知是線段的中點(diǎn).

⑴ 設(shè)點(diǎn)的橫坐標(biāo)為,寫出的面積關(guān)于的函數(shù)的表達(dá)式;
⑵ 求函數(shù)的最大值,并求此時(shí)點(diǎn)的坐標(biāo)。

;
⑵當(dāng)時(shí),有最大值,此時(shí),點(diǎn)的坐標(biāo)為;
當(dāng)時(shí),有最大值,此時(shí),點(diǎn)的坐標(biāo)為 或。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特修一條專用鐵路,用一列火車作為交通車,已知該車每次拖4節(jié)車廂,一日能來回16次, 如果每次拖7節(jié)車廂,則每日能來回10次.
(1)若每日來回的次數(shù)是車頭每次拖掛車廂節(jié)數(shù)的一次函數(shù),求此一次函數(shù)解析式:
(2)在(1)的條件下,每節(jié)車廂能載乘客110人.問這列火車每天來回多少次才能使運(yùn)營人數(shù)最多?并求出每天最多運(yùn)營人數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x+2ax+2,   x.
(1)當(dāng)a=-1時(shí),求函數(shù)的最大值和最小值;
(2) 若y=f(x)在區(qū)間 上是單調(diào) 函數(shù),求實(shí)數(shù)  a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出場單價(jià)就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會(huì)超過600件.
(1)設(shè)一次訂購x件,服裝的實(shí)際出廠單價(jià)為p元,寫出函數(shù)p=f(x)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時(shí)間僅能持續(xù)5個(gè)月,預(yù)測上市初期和后期會(huì)因供應(yīng)不足使價(jià)格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價(jià)格連續(xù)下跌.現(xiàn)有三種價(jià)格模擬函數(shù):①;②;③.(以上三式中、均為常數(shù),且
(I)為準(zhǔn)確研究其價(jià)格走勢,應(yīng)選哪種價(jià)格模擬函數(shù)(不必說明理由)
(II)若,,求出所選函數(shù)的解析式(注:函數(shù)定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(III)在(II)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟(jì)效益,當(dāng)?shù)卣?jì)劃在價(jià)格下跌期間積極拓寬外銷,請你預(yù)測該海鮮將在哪幾個(gè)月份內(nèi)價(jià)格下跌.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了保護(hù)水資源,提倡節(jié)約用水,某市對居民生活用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過6噸時(shí)每噸3元,當(dāng)用水超過6噸但不超過15噸時(shí),超過部分每噸5元,當(dāng)用水超過15噸時(shí),超過部分每噸10元。
(1)求水費(fèi)y(元)關(guān)于用水量x(噸)之間的函數(shù)關(guān)系式;
(2)若某戶居民某月所交水費(fèi)為93元,試求此用戶該月的用水量。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的圖象與函數(shù)的圖象交于兩點(diǎn)在線段 上,為坐標(biāo)原點(diǎn)),過軸的垂線,垂足分別為,并且分別交函數(shù)的圖象于兩點(diǎn).
(1)試探究線段的大小關(guān)系;
(2)若平行于軸,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

化簡下列各式:
(1);
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=x,Q=.今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少,能獲得的最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案