16.直線y=kx+3與(x-1)2+(y-2)2=4相交于M,N兩點,MN≥2$\sqrt{3}$,則k的取值范圍是k≤0.

分析 由弦長公式得,當(dāng)圓心到直線的距離d≤1,利用點到直線的距離公式即可求解斜率k的范圍

解答 解:∵M(jìn)N≥2$\sqrt{3}$,圓的半徑為2,
∴由弦長公式得,圓心到直線的距離d≤1,
即d=$\frac{|k+3-2|}{\sqrt{1+{k}^{2}}}$≤1,
∴k≤0.
故答案為k≤0.

點評 本題考查圓心到直線的距離公式的應(yīng)用,以及弦長公式的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.根據(jù)下列條件確定△ABC有兩個解的是( 。
A.a=18  B=$\frac{π}{6}$   A=$\frac{2π}{3}$B.a=60  c=48  C=$\frac{2π}{3}$
C.a=3   b=6     A=$\frac{π}{6}$D.a=14  b=15  A=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等差數(shù)列{an}中,a3=k,a9=12.
(1)當(dāng)k=6時,求數(shù)列{an}的前n項和為Sn;
(2)若bn=n2+6an且對于任意n∈N*,恒有bn+1>bn成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|${\frac{5}{2x+1}$>1},B={x|x2+(a+3)x+3a<0,a∈R}
(1)求A.
(2)若全集U=R,且A∩∁RB=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,ABCDEF為多面體,平面ABED與平面ACFD垂直,點O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(Ⅰ)證明直線BC∥EF;
(Ⅱ)求棱錐F-OBED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在如圖所示的程序框圖中,記所有的x的值組成的集合為A,由輸出的數(shù)據(jù)y組成的集合為B.
(1)分別寫出集合A、B;
(2)在集合A中任取一個元素a,在集合B中任取一個元素b,求所得的兩數(shù)滿足a>b的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱錐P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點,AQ=2BD,PD與EQ交于點G,PC與FQ交于點H,連接GH.
(1)證明:AB∥GH;
(2)求平面ABQ與平面EFQ所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將兩個數(shù)a=5,b=23交換,使a=23,b=5,下面語句正確的一組是( 。
A.a=b b=aB.c=b b=a  a=cC.b=a a=bD.a=c c=b b=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用秦九昭算法計算多項式f(x)=2x6+5x5+6x4+23x3-8x2+10x-3,x=-4時,V3的值為( 。
A.-742B.-49C.18D.188

查看答案和解析>>

同步練習(xí)冊答案