【題目】中,已知,,是邊上一點,將沿折起,得到三棱錐。若該三棱錐的頂點在底面的射影在線段上,設(shè),則的取值范圍為______.

【答案】

【解析】

可得其為等腰直角三角形,有題意可知折疊前圖(1)中,根據(jù)等腰直角三角形位置關(guān)系可推出,在(2)圖中,的斜邊,,即可得出答案.

中,,,,

由余弦定理得,

,

所以為等腰直角三角形.

由將沿折起,得到三棱錐,

在底面的射影在線段上,

如圖2所示,平面,則,

,垂足為,連,

所以平面,所以,

在折疊前圖1中,由,,

所以三點共線.中點,

,為等腰直角三角形,

所以在線段之間,故為鈍角,

,所以之間,之間,

所以,.

在圖2中,由于的斜邊,

為直角邊,所以,即.

所以.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,其準(zhǔn)線軸的交點為,過點的直線與拋物線交于兩點.

(1)求拋物線的方程;

(2)點關(guān)于軸的對稱點為,證明:存在實數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知

1)若點的坐標(biāo)為,直線,直線邊于,交邊于,且的面積之比為,求直線的方程;

2)若是一個動點,且的面積為,試求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,動圓與圓外切,且圓與直線相切,記動圓圓心的軌跡為曲線

(1)求曲線的軌跡方程;

(2)設(shè)過定點的動直線與曲線交于兩點,試問:在曲線上是否存在點(與兩點相異),當(dāng)直線的斜率存在時,直線的斜率之和為定值?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過定點.

1)若與圓相切,求的方程;

2)若與圓相交于,兩點,求三角形面積的最大值,并求此時的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三邊分別為所對的角分別為,且三邊滿足,已知的外接圓的面積為,設(shè).則的取值范圍為______,函數(shù)的最大值的取值范圍為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進(jìn)口開始到出口,每遇到一個岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口的岔路口就開始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設(shè)點是其中的一個交叉路口點.

(1)求甲經(jīng)過點的概率;

(2)設(shè)這名游客中恰有名游客都是經(jīng)過點,求隨機變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程為常數(shù))有兩個不相等的根,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案