已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項(xiàng)公式及Sn的最大值.
an=-2n+8(n∈N*),當(dāng)n=3或n=4時(shí),Sn取得最大值12
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)證明:數(shù)列是等比數(shù)列;
(2)若,學(xué)科網(wǎng)函數(shù)的圖象在點(diǎn)處的切線(xiàn)在軸上的截距為,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列,滿(mǎn)足,,,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:;
(3)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在上的最大值為
求數(shù)列的通項(xiàng)公式;
求證:對(duì)任何正整數(shù),都有;
設(shè)數(shù)列的前項(xiàng)和,求證:對(duì)任何正整數(shù),都有成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),用表示當(dāng)時(shí)的函數(shù)值中整數(shù)值的個(gè)數(shù).
(1)求的表達(dá)式.
(2)設(shè),求.
(3)設(shè),若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=1,=an+1-n2-n-,n∈N*.
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿(mǎn)足:,且,.
(1)求通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列滿(mǎn)足:,的前項(xiàng)和為.
(1)求及;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
單調(diào)遞增數(shù)列的前項(xiàng)和為,且滿(mǎn)足,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com