甲、乙兩人參加某種選拔測(cè)試.在備選的10道題中,甲答對(duì)其中每道題的概率都是
3
5
,乙能答對(duì)其中的5道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出3道題進(jìn)行測(cè)試,答對(duì)一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,至少得15分才能入選.
(Ⅰ)分別求甲得0分和乙得0分的概率;
(Ⅱ)求甲、乙兩人中至少有一人入選的概率.
考點(diǎn):相互獨(dú)立事件的概率乘法公式,互斥事件的概率加法公式
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)答對(duì)一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,可得甲得0分和乙得0分的概率;
(Ⅱ)由已知甲、乙至少答對(duì)2題才能入選,求出甲、乙入選的概率,利用對(duì)立事件,即可求得結(jié)論.
解答: 解:(Ⅰ)甲得0分的概率為
C
1
3
×
3
5
×(1-
3
5
)2
=
36
125
;乙得0分的概率為
C
1
5
C
2
5
C
3
10
=
5
12
;
(Ⅱ)由已知甲、乙至少答對(duì)2題才能入選,記甲入選為事件A,乙入選為事件B.
則P(A)=
C
2
3
×(
3
5
)2×
2
5
+(
3
5
)3
=
81
125
,P(B)=
5
12
+
1
12
=
1
2
,
故甲乙兩人至少有一人入選的概率P=1-P(
.
A
.
B
)=
103
125
點(diǎn)評(píng):本題考查概率的計(jì)算,考查互斥事件的概率,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ為第二象限的角,
(1)若sinθ=
1
3
,求cosθ.
(2)若
cos(π-θ)sin(3π-θ)cos(θ-
π
2
)
sin(2π-θ)cos(π+θ)
=-
3
5
,求cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2003年伊拉克戰(zhàn)爭(zhēng)初期,美英聯(lián)軍為了準(zhǔn)確分析戰(zhàn)場(chǎng)形勢(shì),有分別位于科威特和沙特的兩個(gè)距離為
3
a
2
的軍事基地C和D測(cè)得伊拉克兩支精銳部隊(duì)分別在A處和B處,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如圖所示,求伊軍這兩支精銳部隊(duì)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

討論函數(shù)f(x)=lg(1+x)+lg(1-x)的奇偶性與單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為正方形,PA=AD=1,PA⊥面ABCD,E為線段PC上靠近D的一個(gè)三等分點(diǎn).
(1)證明:PC⊥面BDE;
(2)求三棱錐P-BED的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2-(a+2)x+alnx
①當(dāng)a=1時(shí),求函數(shù)f(x)的極小值;
②當(dāng)a=-1時(shí),過(guò)坐標(biāo)原點(diǎn)O作曲線y=f(x)的切線,設(shè)切點(diǎn)為P(m,n),求實(shí)數(shù)m的值;
③若x≥1時(shí),f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,∠BAD=90°,PA=AD=AB=2BC,M是PC的中點(diǎn).
(1)求證:PB⊥DM;
(2)求平面PAB與平面PCD所成的銳二面角的余弦值;
(3)試探究線段PB上是否存在一點(diǎn)Q,使得AQ∥面PCD?若存在,確定點(diǎn)Q的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1(-1,0)、F2(1,0)是橢圓的左右焦點(diǎn),且橢圓經(jīng)過(guò)點(diǎn)(1,
3
2
).
(1)求該橢圓方程;
(2)過(guò)點(diǎn)F1且傾斜角等于
3
4
π的直線l,交橢圓于M、N兩點(diǎn),求△MF2N的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=
1
2
ax2-
1
2
ax,a∈R.
(Ⅰ)當(dāng)a=2時(shí),求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x≥1時(shí),xf(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案