【題目】已知橢圓 : ( )的離心率為 , 為橢圓 上位于第一象限內(nèi)的一點(diǎn).
(1)若點(diǎn) 的坐標(biāo)為 ,求橢圓 的標(biāo)準(zhǔn)方程;
(2)設(shè) 為橢圓 的左頂點(diǎn), 為橢圓 上一點(diǎn),且 ,求直線 的斜率.
【答案】(1)(2)
【解析】
試題分析:
(1)由橢圓的離心率為得到,再根據(jù)點(diǎn)在橢圓上得到,由以上兩式可得,從而可得橢圓的方程。(2)由題意可得橢圓的方程為,設(shè)直線 的方程為 ( ),,解方程組可得,同樣可求得,根據(jù)可得,由解得后即可得到直線的斜率。
試題解析:
(1)∵橢圓的離心率為,
∴,
∴ ,
∴ ①
∵點(diǎn)在橢圓上,
∴②
由①②解得 , ,
∴橢圓的方程為。
(2)由(1)可知 ,即
∴橢圓的方程為,即,
∴點(diǎn),
設(shè)直線 的方程為 ( ),,
由 解得,
∵,
∴。
∵ ,∴ ,
于是設(shè)直線的方程為( )
由 消去整理得
,
解得 或(舍去)
∴ 。
又,
∴ ,
∴ ,即,
∴ ( )
解得,
∴。
即直線的斜率為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體ABC﹣A1B1C1中,底面△ABC為等邊三角形,邊長為2,AA1⊥平面ABC,四邊形A1ACC1為直角梯形,CC1與平面ABC所成的角為 ,AA1=1
(1)若P為AB的中點(diǎn),求證:A1P∥平面BC1C;
(2)求二面角A1﹣BC1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若對任意的,(為自然對數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ( , )的左、右焦點(diǎn)分別為、 ,過 的直線交雙曲線右支于 , 兩點(diǎn),且 ,若 ,則雙曲線的離心率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個部件由三個元件按下圖方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作,設(shè)三個電子元件的使用壽命(單位:小時)均服從正態(tài)分布N(1000,502),且各個元件能否正常相互獨(dú)立,那么該部件的使用壽命超過1000小時的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com