設(shè)F1,F(xiàn)2是雙曲線x2-y2=a2的兩個(gè)焦點(diǎn),Q是雙曲線上任意一點(diǎn),從F1引∠F1QF2平分線的垂線,垂足是P,則點(diǎn)P的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:點(diǎn)F1關(guān)于∠F1PF2的角平分線PQ的對(duì)稱點(diǎn)M在直線PF2的延長(zhǎng)線上,故|F2M|=|PF1|-|PF2|=2a,又OP是△F2F1M的中位線,推出|OP|=a,由此可以求出點(diǎn)M的軌跡方程,即有所求軌跡.
解答: 解:點(diǎn)F1關(guān)于∠F1QF2的角平分線PQ的對(duì)稱點(diǎn)M在直線PF2的延長(zhǎng)線上,
故|F2M|=|QF1|-|QF2|=2a,
又OP是△F2F1M的中位線,
故|OP|=a,
點(diǎn)P的軌跡是以原點(diǎn)為圓心,a為半徑的圓一部分,
則點(diǎn)P的軌跡方程為圓x2+y2=a2
故選:A.
點(diǎn)評(píng):本小題主要考查軌跡方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題,解答關(guān)鍵是應(yīng)用角分線的性質(zhì)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
5
13
,α是第二象限的角,則cos(π-α)=(  )
A、
12
13
B、
5
13
C、-
5
13
D、-
12
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n為不同的直線,α,β為不同的平面,若①m∥n,n∥α;②m⊥n,n⊥α;③m?α,m∥β,α∥β;④m⊥β,α⊥β,則其中能使m∥α成立的充分條件有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
4x
的定義域?yàn)椋ā 。?/div>
A、[0,+∞)
B、(0,+∞)
C、{0}
D、以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列命題中,不是公理的是(  )
A、如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
B、過(guò)不在同一直線上的三點(diǎn),有且只有一個(gè)平面
C、如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在此平面內(nèi)
D、平行于同一個(gè)平面的兩個(gè)平面相互平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F(xiàn)分別是BB1,DD1的中點(diǎn),求證:
(1)FC1∥平面ADE;
(2)平面ADE∥平面B1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將各項(xiàng)均為正數(shù)的數(shù)列{an}排成如圖所示的三角形數(shù)陣(第n行有n個(gè)數(shù),同一行下標(biāo)小的排在左邊).bn表示數(shù)陣中第n行第1列的數(shù).
已知數(shù)列{bn}為等比數(shù)列,且從第3行開(kāi)始,各行均構(gòu)成公差為d的等差數(shù)列,a1=1,a12=17,a18=34.
(1)求數(shù)陣中第m行第n列(m,n∈N+且m≥3,n≤m)的數(shù)Amn(用m,n表示);
(2)試問(wèn)a2015處在數(shù)陣中第幾行第幾列?
(3)試問(wèn)這個(gè)數(shù)列中是否有2015這個(gè)數(shù)?有求出具體位置,沒(méi)有說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(-
1
2
,
3
2
),
OA
=
a
-
b
,
OB
=
a
+
b
,若△OAB是以O(shè)為直角頂點(diǎn)的等腰直角三角形,則△AOB的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
是單位向量,
a
b
=0,若向量
c
與向量
a
、
b
共面,且滿足|
a
-
b
-
c
|=1,則|
c
|的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案