【題目】如圖,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別為A1B1、A1A的中點(diǎn).
(1)求 >的值;
(2)求證:BN⊥平面C1MN;
(3)求點(diǎn)B1到平面C1MN的距離.
【答案】
(1)解:以CA所在直線(xiàn)為x軸,以CB所在直線(xiàn)為y軸,以CC1所在直線(xiàn)為z軸建立空間坐標(biāo)系.
則A(1,0,0),B(0,1,0),A1 (1,0,2),B1 ( 0,1,2),C1(0,0,2),M( , ,2),
N(1,0,1),
∵ =(1,﹣1,2), =( 0,1,2).
∴ = = = .
(2)證明:∵ =(1,﹣1,1), =( , ,0), =(1,0,﹣1),
∴ = ﹣ +0=0, =1﹣0﹣1=0,∴ , ,
∴BN⊥平面C1MN.
(3)解:設(shè)點(diǎn)B1到平面C1MN的距離為h,∵VB1﹣C1MN= ,
∴ ×( MNMC1 )h= ×( B1MC1M ) NA1,
即 ×( )h= ×( )×1,∴h= .
【解析】(1)建立空間坐標(biāo)系,求出各個(gè)點(diǎn)的坐標(biāo),利用兩個(gè)向量的夾角公式求得 >的值.(2)由 =0, =0,得到 , ,從而得到BN⊥平面C1MN.(Ⅲ)設(shè)點(diǎn)B1到平面C1MN的距離為h,由VB1﹣C1MN= ,解方程求得 h 值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線(xiàn)與平面垂直的判定,掌握一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 為的中點(diǎn), 是棱上的點(diǎn), , .
(Ⅰ)求證:平面平面;
(Ⅱ)若三棱錐的體積是四棱錐體積的,設(shè),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)與直線(xiàn)2x+y﹣3=0平行,求a的值;
(2)若 ,試討論函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該市中學(xué)生中的全體男生的平均身高;
(Ⅲ)從該市的中學(xué)生中隨機(jī)抽取一名男生,根據(jù)直方圖中的信息,估計(jì)其身高在180 cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機(jī)抽取人,用表示身高在以上的男生人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 是偶函數(shù),g(x)=t2x+4,
(1)求a的值;
(2)當(dāng)t=﹣2時(shí),求f(x)<g(x)的解集;
(3)若函數(shù)f(x)的圖象總在g(x)的圖象上方,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)= ,若關(guān)于x的方程[f(x)]2+af(x)+ =0,a∈R有且僅有8個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)fn(x)= x3﹣ (n+1)x2+x(n∈N*),數(shù)列{an}滿(mǎn)足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4;
(2)根據(jù)(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(3)求證: + +…+ < .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn},{cn}滿(mǎn)足 (n+1) bn=an+1,(n+2) cn=,其中n∈N*.
(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項(xiàng)公式;
(2)若存在實(shí)數(shù)λ,使得對(duì)一切n∈N*,有bn≤λ≤cn,求證:數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣2tx+2,其中 t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對(duì)任意的x∈[a,a+2],都有f(x)<5,求實(shí)數(shù)a的取值范圍;
(3)若對(duì)任意的x1 , x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com