已知函數(shù)f(x)=lg(2+x),g(x)=lg(2-x),設(shè)h(x)=f(x)+g(x).
(Ⅰ)求函數(shù)h(x)的定義域
(Ⅱ)求h(-1)-h(1)的值,并判斷函數(shù)h(x)的奇偶性,(請說明理由).
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)根據(jù)對數(shù)函數(shù)成立的條件,即可求函數(shù)h(x)的定義域
(Ⅱ)計(jì)算h(-1)-h(1)的值,根據(jù)函數(shù)奇偶性的定義即可并判斷函數(shù)h(x)的奇偶性.
解答: 解:(Ⅰ)∵h(yuǎn)(x)=f(x)+g(x)=lg(2+x)+lg(2-x),
∴要使函數(shù)有意義,則
2+x>0
2-x>0
,
x>-2
x<2
,
∴-2<x<2,
即函數(shù)h(x)的定義域(-2,2).
(Ⅱ)∵h(yuǎn)(x)=lg(2+x)+lg(2-x),
∴h(-1)-h(1)=lg1+lg3-lg3-lg1=0.
函數(shù)h(x)是偶函數(shù).
∵定義域?yàn)椋?2,2),關(guān)于原點(diǎn)對稱,
且h(-x)=lg(2-x)+lg(2+x)=h(x),
即函數(shù)h(x)是偶函數(shù).
點(diǎn)評:本題主要考查函數(shù)定義域和函數(shù)奇偶性的判斷,根據(jù)對數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) 把3本不同的語文書、7本不同的數(shù)學(xué)書隨機(jī)的排在書架上,則語文書排在一起的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+φ)(0<φ<π)的圖象沿x軸向右平移
π
8
個(gè)單位后,得到的圖象關(guān)于y軸對稱,則φ的一個(gè)可能的值為( 。
A、-
π
4
B、
π
4
C、
4
D、-
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=Acos(ωx-
π
3
)(A>0,ω>0)的最小正周期為2,圖象經(jīng)過點(diǎn)P(0,1).
(1)求A和ω;
(2)求f(x)在區(qū)間[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)市場需求,某種型號的家具每套定價(jià)為2400元,供應(yīng)量為120套,而需求量是560套,若價(jià)格上升到2700元,則供應(yīng)量為160套,需求量是380套,已知家具的供需關(guān)系滿足線性關(guān)系,請寫出這種型號家具的供應(yīng)關(guān)系和需求關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)幾何體的三視圖如圖所示.
(Ⅰ)求此幾何體的表面積;
(Ⅱ)在如圖的正視圖中,如果點(diǎn)A為所在線段中點(diǎn),點(diǎn)B為頂點(diǎn),求在幾何體側(cè)面上從點(diǎn)A到點(diǎn)B的最短路徑的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x2-8x-20>0,命題q:1-m≤x≤1+m2,¬p是q的充分而不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知向量
a
=(3,-4),
b
=(0,-1),則向量
a
在向量
b
的方向上的投影是
 

查看答案和解析>>

同步練習(xí)冊答案