過原點(diǎn)O作兩條相互垂直的直線分別與橢圓P:交于A、C與B、D, 則四邊形ABCD面積最小值為______________________.

試題分析:由題意可得四邊形ABCD面積等于•AC•BD,當(dāng)AC和BD中,有一條直線的斜率不存在時(shí),求得四邊形ABCD面積等于2.當(dāng)AC和BD的斜率都存在時(shí),設(shè)AC的方程為y=kx,BD方程為y=-x.y=kx代入橢圓的方程化簡(jiǎn),利用根與系數(shù)的關(guān)系及弦長(zhǎng)公式求得AC的值,同理求得BD的值,化簡(jiǎn) 
•AC•BD 為,再利用基本不等式求得它的最小值,綜合可得結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)的右焦點(diǎn),右頂點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線與橢圓有且只有一個(gè)交點(diǎn),且與直線交于點(diǎn),問:是否存在一個(gè)定點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對(duì)稱.

(1)若點(diǎn)P的坐標(biāo),求m的值;
(2)若橢圓C上存在點(diǎn)M,使得,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

知橢圓的兩焦點(diǎn)、,離心率為,直線與橢圓交于兩點(diǎn),點(diǎn)軸上的射影為點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求直線的方程,使的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別、,點(diǎn)是橢圓短軸的一個(gè)端點(diǎn),且焦距為6,的周長(zhǎng)為16.
(I)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截的線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn),一個(gè)焦點(diǎn)為
(1)求橢圓的方程;
(2)若直線軸交于點(diǎn),與橢圓交于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程;
(2)當(dāng)=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)經(jīng)過點(diǎn)M(-2,-1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(1)求橢圓C的方程;
(2)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案