在△ABC中,三內(nèi)角A、B、C所對(duì)邊分別為a、b、c若(b-c)sinB=2csinC且a=
10
,cosA=
5
8
,則△ABC面積等于( 。
分析:由已知(b-c)sinB=2csinC結(jié)合正弦定理可得b,c之間的關(guān)系,然后由a=
10
,cosA=
5
8
,結(jié)合余弦定理可得,
5
8
=cosA=
b2+c2-a2
2bc
可求,b,c,及sinA,代入三角形的面積公式S△ABC=
1
2
bcsinA
即可求解
解答:解:∵(b-c)sinB=2csinC
由正弦定理可得(b-c)b=2c2
即b2-bc-2c2=0
∴b=2c
a=
10
,cosA=
5
8

由余弦定理可得,
5
8
=cosA=
b2+c2-a2
2bc
=
4c2+c2-10
4c2

∴c=2,b=4,sinA=
1-(
5
8
)2
=
39
8

S△ABC=
1
2
bcsinA
=
1
2
×4×2
×
39
8
=
39
2

故選A
點(diǎn)評(píng):本題主要考查了正弦定理、余弦定理及同角平方關(guān)系及三角形的面積公式在求解三角形中的綜合應(yīng)用,解題的關(guān)鍵是熟練掌握基本公式并能靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期為2π.
(1)當(dāng)x∈R時(shí),求f(x)的值域;
(2)在△ABC中,三內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c且滿足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周長(zhǎng)l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(II)在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知點(diǎn)(A,
1
2
)
經(jīng)過函數(shù)f(x)的圖象,b,a,c成等差數(shù)列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三內(nèi)角A、B、C所對(duì)應(yīng)的邊長(zhǎng)分別為a、b、c,且A、B、C成等差數(shù)列,b=
3
,則△ABC的外接圓半徑為 ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,設(shè)向量
m
=(b-c,c-a)
,
n
=(b, c+a)
,若向量
m
n
,則角A的大小為( 。
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案