【題目】設(shè)兩點(diǎn)在拋物線上,是AB的垂直平分線,
(1)當(dāng)且僅當(dāng)取何值時(shí),直線經(jīng)過(guò)拋物線的焦點(diǎn)F?證明你的結(jié)論;
(2)若,弦AB是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn),若不過(guò)定點(diǎn),說(shuō)明理由.
【答案】(1),證明見(jiàn)解析 (2)過(guò)定點(diǎn),(0,)
【解析】
(1)對(duì)直線的斜率是否存在進(jìn)行討論,利用中垂線的性質(zhì)列方程組求出直線的截距b的范圍,從而得出結(jié)論;
(2)設(shè)AB的方程為:y=kx+b,聯(lián)立方程組,根據(jù)根與系數(shù)的關(guān)系和求出b的值,從而得到定點(diǎn)的坐標(biāo).
解:(1)∵拋物線,即,
∴焦點(diǎn)為
(i)直線的斜率不存在時(shí),顯然有
(ii)直線的斜率存在時(shí),設(shè)為k,截距為b
即直線:y=kx+b,由已知得:
即的斜率存在時(shí),不可能經(jīng)過(guò)焦點(diǎn)
所以當(dāng)且僅當(dāng)=0時(shí),直線經(jīng)過(guò)拋物線的焦點(diǎn)F
(2)設(shè)直線:y=kx+b,
聯(lián)立方程組:
若,則
過(guò)定點(diǎn)(0,). ,
因此直線AB過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,,是拋物線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線與軸的交點(diǎn),是面積為4的直角三角形.
(1)求拋物線的方程;
(2)若為拋物線上異于原點(diǎn)的任意一點(diǎn),過(guò)作的垂線交準(zhǔn)線于點(diǎn),則直線與拋物線是何種位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀以下案例,利用此案例的想法化簡(jiǎn).
案例:考察恒等式左右兩邊的系數(shù).
因?yàn)橛疫?/span>,
所以,右邊的系數(shù)為,
而左邊的系數(shù)為,
所以=.
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上一點(diǎn),當(dāng)時(shí),有.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)橢圓右焦點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),試問(wèn)在鈾上是否存在與不重合的定點(diǎn),使得恒成立?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(Ⅰ)用表示甲同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在7:30之前到校的天數(shù)比乙同學(xué)在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,121,3553等.顯然2位“回文數(shù)”共9個(gè):11,22,33,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y.
(1)求X為“回文數(shù)”的概率;
(2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)地區(qū)計(jì)劃在某水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過(guò)去50年的水文資料顯示,水的年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和,單位:十億立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超過(guò)12的年份有35年,超過(guò)12的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來(lái)4年中,至多有1年的年入流量超過(guò)12的概率;
(2)若水的年入流量與其蘊(yùn)含的能量(單位:百億萬(wàn)焦)之間的部分對(duì)應(yīng)數(shù)據(jù)為如下表所示:
年入流量 | 6 | 8 | 10 | 12 | 14 |
蘊(yùn)含的能量 | 1.5 | 2.5 | 3.5 | 5 | 7.5 |
用最小二乘法求出關(guān)于的線性回歸方程;(回歸方程系數(shù)用分?jǐn)?shù)表示)
(3)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
附:回歸方程系數(shù)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的外接球O的半徑為,則過(guò)該正方體的三個(gè)頂點(diǎn)的平面截球O所得的截面的面積為( )
A.2π或B.3π或
C.2π或3πD.2π或3π或
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com