已知A、B、C是直線l上不同的三點(diǎn),O是l外一點(diǎn),向量滿足:記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若對(duì)任意不等式恒成立,求實(shí)數(shù)a的取值范圍:
(3)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

(1);(2);(3).

解析試題分析:(1)根據(jù)條件中以及A,B,C三點(diǎn)共線可得,從而求得y的解析式;(2)要使上恒成立,只需,通過求導(dǎo)判斷的單調(diào)性即可求得上的最大值,從而得到a的取值范圍;(3)題中方程等價(jià)于,因此要使方程有兩個(gè)不同的實(shí)根,只需求得在(0,1]上的取值范圍即可,通過求導(dǎo)判斷單調(diào)性顯然可以得到在(0,1]上的取值情況.
(1),
又∵A,B,C在同一直線上,∴,則
    4分
(2)①    5分
設(shè)依題意知上恒成立,
∴h(x)在上是增函數(shù),要使不等式①成立,當(dāng)且僅當(dāng).    8分;
(3)方程即為變形為

    10分
列表寫出 x,在[0,1]上的變化情況:

<dl id="rom6m"><track id="rom6m"></track></dl>

<tfoot id="rom6m"><ruby id="rom6m"></ruby></tfoot>

    <form id="rom6m"></form>

       
      x
       
      0
      (0,)

      (,1)
       
      1

       
      小于0
      取極小值
      大于0
       
       

       
      ln2

      練習(xí)冊(cè)系列答案
      相關(guān)習(xí)題

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      (14分)(2011•陜西)設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
      (Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
      (Ⅱ)討論g(x)與的大小關(guān)系;
      (Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對(duì)任意x>0成立.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      已知曲線滿足下列條件:
      ①過原點(diǎn);②在處導(dǎo)數(shù)為-1;③在處切線方程為.
      (1) 求實(shí)數(shù)的值;
      (2)求函數(shù)的極值.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      函數(shù)的圖象記為E.過點(diǎn)作曲線E的切線,這樣的切線有且僅有兩條,求的值.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      已知函數(shù)f(x)=ln x-
      (1)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
      (2)f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;
      (3)試求實(shí)數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      已知函數(shù),,且在點(diǎn)
      處的切線方程為.
      (1)求的值;
      (2)若函數(shù)在區(qū)間內(nèi)有且僅有一個(gè)極值點(diǎn),求的取值范圍;  
      (3)設(shè)為兩曲線,的交點(diǎn),且兩曲線在交點(diǎn)處的切線分別為.若取,試判斷當(dāng)直線軸圍成等腰三角形時(shí)值的個(gè)數(shù)并說明理由.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      設(shè)函數(shù)f(x)=ex-ax-2.
      (1)求f(x)的單調(diào)區(qū)間;
      (2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0,求k的最大值.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      已知函數(shù)
      (1)若,求曲線在點(diǎn)處的切線方程;
      (2)求函數(shù)的單調(diào)區(qū)間;
      (3)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源: 題型:解答題

      某水產(chǎn)養(yǎng)殖場(chǎng)擬造一個(gè)無蓋的長(zhǎng)方體水產(chǎn)養(yǎng)殖網(wǎng)箱,為了避免混養(yǎng),箱中要安裝一些篩網(wǎng),其平面圖如下,如果網(wǎng)箱四周網(wǎng)衣(圖中實(shí)線部分)建造單價(jià)為每米56元,篩網(wǎng)(圖中虛線部分)的建造單價(jià)為每米48元,網(wǎng)箱底面面積為160平方米,建造單價(jià)為每平方米50元,網(wǎng)衣及篩網(wǎng)的厚度忽略不計(jì).
      (1)把建造網(wǎng)箱的總造價(jià)y(元)表示為網(wǎng)箱的長(zhǎng)x(米)的函數(shù),并求出最低造價(jià);
      (2)若要求網(wǎng)箱的長(zhǎng)不超過15米,寬不超過12米,則當(dāng)網(wǎng)箱的長(zhǎng)和寬各為多少米時(shí),可使總造價(jià)最低?(結(jié)果精確到0.01米)

      查看答案和解析>>

      同步練習(xí)冊(cè)答案