14.下面給出了四個類比推理,結(jié)論正確的是( 。
①由若a,b,c∈R則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$$\overrightarrow{c}$)
②在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則$\frac{AG}{GD}$=2;類比推出:在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則$\frac{AO}{OM}$=3.
③a,b為實(shí)數(shù),若a2+b2=0則a=b=0;類比推出:z1,z2為復(fù)數(shù),若z12+z22=0則z1=z2
④若數(shù)列{an}是等差數(shù)列,對于bn=$\frac{1}{n}({a_1}$+a2+…+an),則數(shù)列{bn}也是等差數(shù)列;類比推出:若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,則數(shù)列{dn}也是等比數(shù)列.
A.①②B.②③C.②④D.③④

分析 逐個驗(yàn)證:①向量要考慮方向.
②利用等體積,即可判斷;
③數(shù)集有些性質(zhì)以傳遞的,但有些性質(zhì)不能傳遞,因此,要判斷類比的結(jié)果是否正確,關(guān)鍵是要在新的數(shù)集里進(jìn)行論證,當(dāng)然要想證明一個結(jié)論是錯誤的,也可直接舉一個反例;
④在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等.

解答 解:①由若a,b,c∈R則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$$\overrightarrow{c}$),不正確,因?yàn)椋?\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$與$\overrightarrow{c}$共線,$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)與$\overrightarrow{a}$共線,當(dāng)$\overrightarrow{a}$、$\overrightarrow{c}$方向不同時,向量的數(shù)量積運(yùn)算結(jié)合律不成立;
②在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則$\frac{AG}{GD}$=2;類比推出:在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則$\frac{AO}{OM}$=3,正確.
③在復(fù)數(shù)集C中,若z1,z2∈C,z12+z22=0,則可能z1=1且z2=i.故錯誤
④在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以類比推出:若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,則數(shù)列{dn}也是等比數(shù)列.正確.
故選:C.

點(diǎn)評 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).但類比推理的結(jié)論不一定正確,還需要經(jīng)過證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列向量中不是單位向量的是( 。
A.(-1,0)B.(1,1)C.(cos37°,sin37°)D.$\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.要得到函數(shù)y=sin2x的圖象,只要將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平行移動$\frac{π}{3}$個單位B.向左平行移動$\frac{π}{6}$個單位
C.向右平行移動$\frac{π}{3}$個單位D.向右平行移動$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.勾股定理:在直角邊長為a、b,斜邊長為c的直角三角形中,有a2+b2=c2.類比勾股定理可得,在長、寬、高分別為p、q、r,體對角線長為d 的長方體中,有( 。
A.p2+q2+r2+pq+qr+rp=d2B.p3+q3+r3=d3
C.p2+q2+r2=d2D.p+q+r=d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x^2}{1-x}$(x≠1),數(shù)列{an}滿足a1=m(m≠1),an+1=f(an).
(Ⅰ)當(dāng)m=-1時,寫出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)是否存在實(shí)數(shù)m,使得數(shù)列{an}是等比數(shù)列?若存在,求出所有符合要求的m的值;若不存在,請說明理由;
(Ⅲ)當(dāng)0<m<$\frac{1}{2}$時,求證:$\underset{\stackrel{n}{π}}{i=1}$(ai+1+ai)<$\frac{1}{2m}$.
(其中π是求乘積符號,如$\underset{\stackrel{5}{π}}{i=1}$i=1×2×3×4×5,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知兩個同底的正四棱錐的所有頂點(diǎn)都在同一球面上,它們的底面邊長為2,體積的比值為$\frac{1}{2}$,則該球的表面積為9π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列類比推理的結(jié)論不正確的是( 。
①類比“實(shí)數(shù)的乘法運(yùn)算滿足結(jié)合律”,得到猜想“向量的數(shù)量積運(yùn)算滿足結(jié)合律”;
②類比“設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則S4,S8-S4,S12-S8成等差數(shù)列”,得到猜想“設(shè)等比數(shù)列{bn}的前n項(xiàng)積為Tn,則T4,$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$成等比數(shù)列”;
③類比“平面內(nèi),同垂直于一直線的兩直線相互平行”,得到猜想“空間中,同垂直于一直線的兩直線相互平行”;
④類比“設(shè)AB為圓的直徑,P為圓上任意一點(diǎn),直線PA,PB的斜率存在,則kPA•kPB為常數(shù)”,得到猜想“設(shè)AB為橢圓的長軸,P為橢圓上任意一點(diǎn),直線PA,PB的斜率存在,則kPA•kPB為常數(shù)”.
A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),設(shè)a=f′(-2),b=f′(-3),c=f(-2)-f(-3),則a,b,c由小到大的關(guān)系為a<c<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求y=x2(2-x)(0<x<2)最大值.

查看答案和解析>>

同步練習(xí)冊答案