【題目】已知等比數(shù)列{an}滿足 ,n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn , 若不等式Sn>kan﹣2對一切n∈N*恒成立,求實數(shù)k的取值范圍.
【答案】解:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q, ∵ ,n∈N* , ∴a2+a1=9,a3+a2=18,
∴ ,
又2a1+a1=9,∴a1=3.
∴ .
(Ⅱ) ,
∴3(2n﹣1)>k32n﹣1﹣2,∴ .
令 ,f(n)隨n的增大而增大,
∴ .∴ .
∴實數(shù)k的取值范圍為
【解析】(Ⅰ)利用等比數(shù)列{an}滿足 ,確定數(shù)列的公比與首項,即可求數(shù)列{an}的通項公式;(Ⅱ)求出Sn , 再利用不等式Sn>kan﹣2,分離參數(shù),求最值,即可求實數(shù)k的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的通項公式的相關(guān)知識可以得到問題的答案,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】已知是方程 的兩個不等實根,函數(shù)的定義域為.
(1)當時,求函數(shù)的最值;
(2)試判斷函數(shù)在區(qū)間的單調(diào)性;
(3)設(shè),試證明:對于,若,則.
(參考公式: ,當且僅當時等號成立)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC中,A(1,3),BC邊所在的直線方程為y﹣1=0,AB邊上的中線所在的直線方程為x﹣3y+4=0. (Ⅰ)求B,C點的坐標;
(Ⅱ)求△ABC的外接圓方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}和{bn}(bn≠0,n∈N*),滿足a1=b1=1,anbn+1﹣an+1bn+bn+1bn=0
(1)令cn= ,證明數(shù)列{cn}是等差數(shù)列,并求{cn}的通項公式
(2)若bn=2n﹣1 , 求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如表:
x | 1 | 2 | 3 | 4 | 5 |
y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(Ⅰ)求y關(guān)于x的線性回歸方程 ;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預測當年產(chǎn)量為多少時,年利潤z取到最大值?(保留兩位小數(shù))
參考公式: = = , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 的展開式各項系數(shù)和為M, 的展開式各項系數(shù)和為N,(x+1)n的展開式各項的系數(shù)和為P,且M+N﹣P=2016,試求 的展開式中:
(1)二項式系數(shù)最大的項;
(2)系數(shù)的絕對值最大的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種汽車,購車費用是10萬元,每年使用的保險費、養(yǎng)路費、汽車費約為0.9萬元,年維修費第一年是0.2萬元,以后逐年遞增0.2萬元,問這種汽車使用多少年時,它的平均費用最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為( ,0),求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
x | |||||
2x+ | |||||
sin(2x+ ) | |||||
f(x) |
(1)用五點法完成下列表格,并畫出函數(shù)f(x)在區(qū)間 上的簡圖;
(2)若 ,函數(shù)g(x)=f(x)+m的最小值為2,試求處函數(shù)g(x)的最大值,指出x取值時,函數(shù)g(x)取得最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com