【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關(guān)系式;

(2)如果將統(tǒng)計的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤不少于1950元的人數(shù)之和,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1)見解析;(2)見解析

【解析】

(1)因為甲每天生產(chǎn)的次品數(shù)為,所以損失元,則其生產(chǎn)的正品數(shù)為,獲得的利潤為元,即可列出的函數(shù)關(guān)系式;

(2)由題意,可得甲、乙1天中生產(chǎn)的次品數(shù)不超過1的人數(shù)之和的可能取值,分別求得取每個值對應(yīng)的概率,即可列出分布列,利用公式求解數(shù)學(xué)期望。

(1)因為甲每天生產(chǎn)的次品數(shù)為,所以損失元,

則其生產(chǎn)的正品數(shù)為,獲得的利潤為元,

因而的函數(shù)關(guān)系式為 ,其中.

(2)同理,對于乙來說,,.由,得,

所以是甲、乙1天中生產(chǎn)的次品數(shù)不超過1的人數(shù)之和,所以的可能值為0,1,2,

又甲1天中生產(chǎn)的次品數(shù)不超過1的概率為,

乙1天中生產(chǎn)的次品數(shù)不超過1的概率為

所以

,

所以隨機(jī)變量的分布列為

0

1

2

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P-ABCD,底面ABCD是邊長為的正方形,平面PAC底面ABCD,PA=PC=

1)求證:PB=PD;

2)若點M,N分別是棱PA,PC的中點,平面DMN與棱PB的交點Q,則在線段BC上是否存在一點H,使得DQPH,若存在,BH的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年高考總成績由語數(shù)外三門統(tǒng)考科目和物理、化學(xué)等六門選考科目組成,將每門選考科目的考生原始成績從高到低劃分為、、8個等級,參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%7%、16%24%、24%16%、7%、3%,選考科目成績計入考生總成績時,將AE等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、,八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.某市高一學(xué)生共6000人,為給高一學(xué)生合理選科提供依據(jù),對六門選考科目進(jìn)行測試,其中化學(xué)考試原始成績大致服從正態(tài)分布

1)求該市化學(xué)原始成績在區(qū)間的人數(shù);

2)以各等級人數(shù)所占比例作為各分?jǐn)?shù)區(qū)間發(fā)生的概率,按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級成績在區(qū)間的人數(shù),求

(附:若隨機(jī)變量,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產(chǎn)業(yè)中的一個支柱產(chǎn)業(yè),一直在社會發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )

A. 2010~2016年全國餐飲收入逐年增加

B. 2016年全國餐飲收入比2010年翻了一番以上

C. 2010~2016年全國餐飲收入同比增量最多的是2015年

D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了鼓勵運動提高所有用戶的身體素質(zhì),特推出一款運動計步數(shù)的軟件,所有用戶都可以通過每天累計的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究日平均走步數(shù)和性別是否有關(guān),統(tǒng)計了20191月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為運動達(dá)人,步數(shù)在8000以下的為非運動達(dá)人,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:

運動達(dá)人

非運動達(dá)人

總計

35

60

26

總計

100

1)(i)將列聯(lián)表補充完整;

ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為日平均走步數(shù)和性別是否有關(guān)?

2)從樣本中的運動達(dá)人中抽取7人參加幸運抽獎活動,通過抽獎共產(chǎn)生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一勞動節(jié)放假,某商場進(jìn)行一次大型抽獎活動.在一個抽獎盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個,分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個小球,按3個小球中最大得分的8倍計分,計分在20分到35分之間即為中獎.每個小球被取出的可能性都相等,用表示取出的3個小球中最大得分,求:

(1)取出的3個小球顏色互不相同的概率;

(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;

(3)求某人抽獎一次,中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個自然數(shù)隨機(jī)地排列在的正方形方格內(nèi),對于同一行或同一列中的任意兩個數(shù),計算較大數(shù)與較小數(shù)的商,得到個分?jǐn)?shù).把最小的分?jǐn)?shù)稱之為這種排列的“特征值”.試求特征值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的類比過程。

(1)在一維直線上,線段是一個封閉的中心對稱圖形,有命題1:不重合的兩點決定一條線段;

(2)在二維平面上,圓是一個封閉的中心對稱圖形,有命題2:不共線的三點決定一個圓;

(3)在三維空間中,球是一個封閉的中心對稱圖形,類比猜想:不共面的四點決定一個球。

證明或否定這個類比猜想:不共面的四點決定一個球。

查看答案和解析>>

同步練習(xí)冊答案