【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是
A. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c,且滿足csinA﹣ acosC=0.
(1)求角C的大;
(2)若c=2,求△ABC的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017安徽淮北二!選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中, 以為極點, 軸正半軸為極軸建立極坐標(biāo)系, 圓的極坐標(biāo)方程為,直線的參數(shù)方程為 (t為參數(shù)), 直線和圓交于兩點。
(Ⅰ)求圓心的極坐標(biāo);
(Ⅱ)直線與軸的交點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b∈R,且ab≠0,則下列結(jié)論恒成立的是( )
A.a+b≥2
B.a2+b2>2ab
C.+ ≥2
D.| + |≥2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是各項都為正數(shù)的等比數(shù)列,其前n項和為Sn , 且S2=3,S4=15.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}是等差數(shù)列,且b3=a3 , b5=a5 , 試求數(shù)列{bn}的前n項和Mn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動點,求點P到直線l的距離的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),則cx2+bx+a<0的解集是( )
A.(﹣3, )
B.(﹣∞,﹣3)∪( ,+∞)
C.(﹣2, )
D.(﹣∞,﹣2)∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調(diào)查,得到如下的列聯(lián)表:
男 | 女 | 總計 | |
走天橋 | 40 | 20 | 60 |
走斑馬線 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由 ,算得
參照獨立性檢驗附表,得到的正確結(jié)論是( )
A.有99%的把握認(rèn)為“選擇過馬路的方式與性別有關(guān)”
B.有99%的把握認(rèn)為“選擇過馬路的方式與性別無關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別無關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com