14.在△ABC中,A=60°,a=4,b=$\frac{4}{3}\sqrt{6}$,則B等于( 。
A.45°或135°B.135°C.45°D.以上答案都不對

分析 由sinA,a,b的值,利用正弦定理求出sinB的值,即可確定出B的度數(shù).

解答 解:∵在△ABC中,A=60°,a=4,b=$\frac{4}{3}\sqrt{6}$,
∴由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$得:sinB=$\frac{bsinA}{a}$=$\frac{\frac{4}{3}\sqrt{6}×\frac{\sqrt{3}}{2}}{4}$=$\frac{\sqrt{2}}{2}$,
又b<a,則B=45°,
故選:C.

點(diǎn)評 此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.把1、2、3、4、5這五個數(shù)字組成無重復(fù)數(shù)字的五位數(shù),并把它們按由小到大的順序排列成一個數(shù)列.
(1)43251是這個數(shù)列的第幾項?
(2)求所有五位數(shù)的各位上的數(shù)字之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=-x3+mx2-m(m>0)
(1)當(dāng)m=1時,求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)設(shè)g(x)=|f(x)|,求函數(shù)g(x)在區(qū)間[0,m]上的最大值;
(3)若存在t≤0,使得函數(shù)f(x)圖象上有且僅有兩個不同的點(diǎn),且函數(shù)f(x)的圖象在這兩點(diǎn)處的兩條切線都經(jīng)過點(diǎn)(2,t),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+a(x+lnx),a<0.
(1)若當(dāng)a=-1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)>$\frac{1}{2}$(e+1)a(e為自然對數(shù)的底數(shù)),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知奇函數(shù)f(x)=ax3+bx2+cx+d,(a,b,c,d∈R),滿足f(1)=1,若對任意的x∈[-1,1],都有|f(x)|≤1成立,則實數(shù)a的取值范圍是[-$\frac{1}{2}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:-1+W+W2=0.
求W1997-W1998-W1999+W2000-W2001-W2002+W2003-W2004-W2005的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.甲乙丙三明同學(xué)中有一個人考了滿分,當(dāng)他們被問到誰考了滿分時,甲說:丙沒有考滿分;乙說:是我考的;丙說:甲說的是真話.事實證明:在這三名同學(xué)中,只有一人說的是假話,那么得滿分的同學(xué)是( 。
A.B.C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.2016年8月7日,在里約奧運(yùn)會射擊女子10米氣手槍決賽中,中國選手張夢雪以199.4環(huán)的總成績奪得金牌,為中國代表團(tuán)摘得本屆奧運(yùn)會首金,俄羅斯選手巴特薩拉斯基納獲得銀牌.如表是兩位選手的其中10槍成績.
12345678910
張夢雪10.210.39.810.1109.310.99.910.39.2
巴特薩拉斯基納10.11010.410.29.29.210.510.29.59.7
(1)請計算兩位射擊選手的平均成績,并比較誰的成績較好;
(2)請計算兩位射擊選手成績的方差,并比較誰的射擊情況比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+$\frac{1}{x}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[1,e]上的最值.

查看答案和解析>>

同步練習(xí)冊答案