【題目】《數(shù)書九章》是中國南宋時期杰出數(shù)學家秦九韶的著作,其中在卷五“三斜求積”中提出了已知三角形三邊、、,求面積的公式,這與古希臘的海倫公式完全等價,其求法是“以小斜冥并大斜冥減中斜冥,余半之,自乘于上,以小斜冥乘大斜冥減上,余四約之,為實.一為從隅,開平方得積”若把以上這段文字寫出公式,即若,則.
(1)已知的三邊,,,且,求證:的面積.
(2)若,,求的面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知兩點、,動點在軸上的射影是,且.
(1)求動點的軌跡方程;
(2)設(shè)直線、的兩個斜率存在,分別記為、,若,求點的坐標;
(3)若經(jīng)過點的直線與動點的軌跡有兩個交點、,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學生人均課外學習時間是指單日內(nèi)學生不在教室內(nèi)的平均學習時間,這種課外學習時間對學生的學習有一定的影響.合肥市經(jīng)開區(qū)某著名高中學生群體有走讀生和住校生兩種,調(diào)查顯示:當群體中的學生為走讀生時,走讀生的人均課外學習時間(單位分鐘)為,而住校生的人均課外學習時間恒為40分鐘,試根據(jù)上述調(diào)查結(jié)果回答下列問題:
(1)當為何值時,住校生的人均課外學習時間等于走讀生的課外人均學習時間?
(2)求該校高中學生群體的人均課外學習時間的表達式,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的偶函數(shù)和奇函數(shù),且.
(1)求函數(shù),的解析式;
(2)設(shè)函數(shù),記(,).探究是否存在正整數(shù),使得對任意的,不等式恒成立?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,請說明理由.
參考結(jié)論:設(shè)均為常數(shù),函數(shù)的圖象關(guān)于點對稱的充要條件是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中a,.
(1)當,時,求函數(shù)的零點;
(2)當時,解關(guān)于x的不等式;
(3)如果函數(shù)的圖象恒在直線的上方,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,
(1)當時,求的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值都不超過,則稱所求方程是“恰當回歸方程”.
(1)從這組數(shù)據(jù)中隨機選取2組數(shù)據(jù),求選取的這組數(shù)據(jù)的間隔時間不相鄰的概率;
(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當回歸方程”;
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com