【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點.

(Ⅰ)求證:PC∥平面EBD;

(Ⅱ)求證:平面PBC⊥平面PCD.

【答案】(Ⅰ)見解析 (Ⅱ)見解析

【解析】試題分析:1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;
2)證明,即可證得平面平面

試題解析:(Ⅰ)連接AC交BD與O,連接EO,

∵E、O分別為PA、AC的中點,

∴EO∥PC,

∵PC平面EBD,EO平面EBD

∴PC∥平面EBD

(Ⅱ)∵PD⊥平面ABCD, BC平面ABCD,

∴PD⊥BC,∵ABCD為正方形,∴BC⊥CD,

∵PD∩CD=D, PD、CD平面PCD

∴BC⊥平面PCD,又∵BC平面PBC,

∴平面PBC⊥平面PCD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)國務(wù)院批復(fù)同意,鄭州成功入圍國家中心城市,某校學(xué)生團針對“鄭州的發(fā)展環(huán)境”對20名學(xué)生進行問卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.

(1)分別計算男生女生打分的平均分,并用數(shù)學(xué)特征評價男女生打分的數(shù)據(jù)分布情況;

(2)如圖2按照打分區(qū)間繪制的直方圖中,求最高矩形的高;

(3)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左焦點左頂點.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知,是橢圓上的兩點,是橢圓上位于直線兩側(cè)的動點.若,試問直線的斜率是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點O為坐標(biāo)原點,極軸為x軸非負半軸建立平面直角坐標(biāo)系.
(Ⅰ)求曲線C1和曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點P是曲線C1上一動點,過點P作線段OP的垂線交曲線C2于點Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=3cos2x的圖象,只需把函數(shù)y=3sin(2x+ )的圖象上所有的點(
A.向右平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動 個單位長度
D.向左平移移動 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內(nèi)有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元()滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將該產(chǎn)品的年利潤萬元表示為年促銷費用萬元的函數(shù);

(2)該廠家年促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若如下框圖所給的程序運行結(jié)果為,那么判斷框中應(yīng)填入的關(guān)于的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民有無收看“奧運會開幕式”,某記者分別從某社區(qū)60~70歲,40~50歲,20~30歲的三個年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進行調(diào)查,若在60~70歲這個年齡段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

同步練習(xí)冊答案