13.若某一圓錐的側(cè)面積與其底面積的比值為$\frac{{2\sqrt{3}}}{3}$,則此圓錐軸截面的頂角大小為120°.

分析 設(shè)圓錐的母線長為l,底面半徑為r,得出$\frac{l}{r}$=$\frac{{2\sqrt{3}}}{3}$,利用中截面三角形求解即可.

解答 解:設(shè)圓錐的母線長為l,底面半徑為r,
則$\frac{πrl}{π{r}^{2}}$=$\frac{{2\sqrt{3}}}{3}$,∴$\frac{l}{r}$=$\frac{{2\sqrt{3}}}{3}$設(shè)軸截面頂角的一半為α,
則sinα=$\frac{r}{l}$=$\frac{\sqrt{3}}{2}$,∴α=60°,2α=120°.
故答案為120°.

點(diǎn)評(píng) 本題考查圓錐的結(jié)構(gòu)特征,基本幾何量的計(jì)算.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=$\sqrt{3}$,則該三棱錐外接球的表面積為5π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知圓C的極坐標(biāo)方程是ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=-1+2\sqrt{2t}}\end{array}\right.$(t為參數(shù)),直線l和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn),
(1)求圓C的圓心的極坐標(biāo);
(2)求三角形PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,左、右焦點(diǎn)分別是F1、F2,以原點(diǎn)O為圓心,橢圓C的短半軸為半徑的圓與直線l:x-y+2=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓C上不在x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)F2作OP的平行線交橢圓與M、N兩個(gè)不同的點(diǎn),記S1=S${\;}_{△P{F}_{2}M}$,S2=S${\;}_{△O{F}_{2}N}$,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在極坐標(biāo)系中,過點(diǎn)$({2,\frac{3π}{2}})$且平行于極軸的直線的極坐標(biāo)方程是ρsinθ=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):
x681012
y2356
(1)請(qǐng)?jiān)趫D中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-mx(m∈R).
(Ⅰ)若曲線y=f(x)過點(diǎn)P(1,-1),求曲線y=f(x)在點(diǎn)P處的切線方程;
(Ⅱ)若f(x)≤0對(duì)x∈(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)求函數(shù)f(x)在區(qū)間[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某空間幾何體ABCDEF的三視圖及直觀圖如圖所示

(1)求異面直線BD與EF所成角的大小
(2)求二面角D-BF-E的大小
(3)求該幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,E為B1C1的中點(diǎn),F(xiàn)在CC1上,且C1F=1,G在AA1上,且AG=2.
(1)證明:DG∥平面A1EF;
(2)設(shè)平面A1EF與DD1交于點(diǎn)H,求線段DH的長,并求出直線BH與截面A1EFH所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案